Prof. Dr. Sebastian Rudolph

Introduction to Formal Concept Analysis Exercise Sheet 7, Winter Semester 2017/18

Exercise 1 (frequent concept intents and closure systems)

Definition (frequent concept intent). Let $\mathbb{K} = (G, M, I)$ be a formal context.

(a) The support of a set $B \subseteq M$ of attributes in \mathbb{K} is given by

$$\operatorname{supp}(B) := \frac{|B'|}{|G|}.$$

(b) For a given minimal support minsupp the set of frequent concept intents is given by

$$\{B \subseteq M \mid \exists A \subseteq G : (A, B) \in \mathfrak{B}(G, M, I) \land \operatorname{supp}(B) \ge minsupp\}.$$

Show that the set of frequent concept intents together with the set M forms a closure system.

Solution:

Proof: We have to show that the intersection of frequent concept intents is again a frequent concept intent. We already know that the intersection of intents produces an intent. It remains to show that it is frequent. So let \mathfrak{I} be a set of frequent intents. We pick one $B \in \mathfrak{I}$ and observe $\operatorname{supp}(B) = \frac{|B'|}{|G|} \ge minsupp$. Moreover, we have $\bigcap \mathfrak{I} \subseteq B$ and consequently $B' \subseteq (\bigcap \mathfrak{I})'$. Therefore $\operatorname{supp}(\bigcap \mathfrak{I}) = \frac{|(\bigcap \mathfrak{I})'|}{|G|} \ge \frac{|B'|}{|G|} \ge minsupp$, i.e., $\bigcap \mathfrak{I}$ is frequent.

Exercise 2 (support)

Show the validity of the properties of the support function that are employed by the TITANIC algorithm:

Let (G, M, I) be a formal context $X, Y \subseteq M$. Then it holds:

- 1) $X \subseteq Y \implies \operatorname{supp}(X) \ge \operatorname{supp}(Y)$
- 2) $X'' = Y'' \implies \operatorname{supp}(X) = \operatorname{supp}(Y)$
- 3) $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \implies X'' = Y''$

Solution:

- 1. Let $X \subseteq Y$, then $Y' \subseteq X'$ holds as we saw in Exercise Sheet 1. This implies, $supp(Y) = \frac{|Y'|}{|G|} \le \frac{|X'|}{|G|} = supp(X)$
- 2. $X'' = Y'' \implies \operatorname{supp}(X) = \operatorname{supp}(Y)$ $X'' = Y'' \iff X''' = Y''' \iff X' = Y' \implies \operatorname{supp}(X) = \frac{|X'|}{|G|} = \frac{|Y'|}{|G|} = \operatorname{supp}(|Y|).$
- 3. $X \subseteq Y \land \operatorname{supp}(X) = \operatorname{supp}(Y) \implies X'' = Y''$ $\operatorname{supp}(X) = \operatorname{supp}(Y) \implies |X'| = |Y'| \text{ and } X \subseteq Y \implies X' \supseteq Y'.$ Hence X' = Y', since X' and Y' are finite. It follows, X'' = Y''.

Exercise 3 (computing concept intents with TITANIC)

The following context contains transactions in a supermarket. Compute the closure system of all concept intents using the TITANIC algorithm. (hint: use the table structure from the example computation in the lecture slides)

	× apples (a)	× beer (b)	\times × × chips (c)	tv magazine (d)	toothpaste (e)
t_1	×	×	×		
t_2			×	××	
t_3		××	×	×	
t_4	×	×			×
$\begin{array}{c c} t_1 \\ \hline t_2 \\ \hline t_3 \\ \hline t_4 \\ \hline t_5 \\ \hline t_6 \\ \hline t_7 \\ \hline t_8 \\ \end{array}$			×		× ×
t_6		×	× ×	×	
t_7	×	×			
t_8			×	×	

Solution:

In the first pass, the algorithm deals with the empty set and singletons, all 1-sets. It returns the results for k = 0 and k=1:

step 9

1		\cap
ĸ	_	11.
Τ7		0.

х	x.s	$x \in k_k$?
Ø	1	ves

steps 4+5

step2

step 7

step 1

k = 1:

k = 2:

	X	$X.p_s$		X.s	-	$X \in K_k?$	
	{a}	1		$^{3/8}$		yes	
	{b}	1		$\frac{5}{8}$		yes	
	$\{c\}$	1		$\frac{6}{8}$		yes	
	$\{d\}$	1		4/8		yes	
	$\{e\}$	1	$^{2/8}$			yes	
[steps 12		step 7		step 9		
[X	X X.p_		X.s		$X \in K_k?$	
	$\{a,b\}$	$-\frac{3}{8}$		3/8		no	
	$\{a,c\}$. 3/8	$^{3/8}$			yes	
	$\{a,d\}$	$\frac{3}{8}$	3/8			yes	
	$\{a,e\}$	· · ·		$\frac{1/8}{3/8}$		yes	
	${b,c}$		'			yes	
	${b,d}$		4/8			yes	
	${b,e}$		· · ·			yes	
	$\{c,d\}$	$\{c,d\}$ 4/8			4/8 no		
	$\{c,e\} = \frac{2}{8}$		1/8		yes		
	$\{d,e\}$ 2/8		0		yes		

Step 8 returns: \emptyset .closure $\leftarrow \emptyset$

Step 8 returns: $\{a\}$.closure $\leftarrow \{a, b\}$ $\{b\}$.closure $\leftarrow \{b\}$ $\{c\}$.closure $\leftarrow \{c\}$ $\{d\}$.closure $\leftarrow \{c, d\}$ $\{e\}$.closure $\leftarrow \{e\}$

	step	s 12	step 7	step 9
	X	$X.p_s$	X.s	$X \in K_k$?
k = 3:	$\{a,c,e\}$	1/8	0	yes
n 0.	$ \begin{array}{c} \{a,c,e\} \\ \{a,d,e\} \end{array} $	0	0	no
	$\{b,c,e\}$	1/8	0	yes
	${b,d,e}$	0	0	no

Step 8 returns:

 $\begin{array}{l} \{a,c\}.\text{closure} \leftarrow \{a,b,c\}\\ \{a,d\}.\text{closure} \leftarrow \{a,b,c,d,e\}\\ \{a,e\}.\text{closure} \leftarrow \{a,b,e\}\\ \{b,c\}.\text{closure} \leftarrow \{b,c\}\\ \{b,d\}.\text{closure} \leftarrow \{b,c,d\}\\ \{b,e\}.\text{closure} \leftarrow \{a,b,e\}\\ \{c,e\}.\text{closure} \leftarrow \{c,e\}\\ \{d,e\}.\text{closure} \leftarrow \{a,b,c,d,e\} \end{array}$

k=4:

Step 12: returns the empty set. Hence there is nothing to **WEIGH** in Step 7. Step 9 sets $k_4 = \emptyset$; and in step 10, the loop is exited.

Step 8 returns:

 $\begin{aligned} & \{a,c,e\}. \text{closure} \leftarrow \{a,b,c,d,e\} \\ & \{b,c,e\}. \text{closure} \leftarrow \{a,b,c,d,e\} \end{aligned}$

Step 14: Collects all concept intents: