Introduction to Formal Concept Analysis
 Exercise Sheet 7, Winter Semester 2017/18

Exercise 1 (frequent concept intents and closure systems)
Definition (frequent concept intent). Let $\mathbb{K}=(G, M, I)$ be a formal context.
(a) The support of a set $B \subseteq M$ of attributes in \mathbb{K} is given by

$$
\operatorname{supp}(B):=\frac{\left|B^{\prime}\right|}{|G|}
$$

(b) For a given minimal support minsupp the set of frequent concept intents is given by

$$
\{B \subseteq M \mid \exists A \subseteq G:(A, B) \in \mathfrak{B}(G, M, I) \wedge \operatorname{supp}(B) \geq \text { minsupp }\}
$$

Show that the set of frequent concept intents together with the set M forms a closure system.

Solution:

Proof: We have to show that the intersection of frequent concept intents is again a frequent concept intent. We already know that the intersection of intents produces an intent. It remains to show that it is frequent. So let \mathfrak{I} be a set of frequent intents. We pick one $B \in \mathfrak{I}$ and observe $\operatorname{supp}(B)=\frac{\left|B^{\prime}\right|}{|G|} \geq$ minsupp. Moreover, we have $\bigcap \mathfrak{I} \subseteq B$ and consequently $B^{\prime} \subseteq(\bigcap \mathfrak{I})^{\prime}$. Therefore $\operatorname{supp}(\bigcap \mathfrak{I})=\frac{\left|(\cap \mathfrak{I})^{\prime}\right|}{|G|} \geq \frac{\left|B^{\prime}\right|}{|G|} \geq$ minsupp, i.e., $\cap \mathfrak{I}$ is frequent.
Exercise 2 (support)
Show the validity of the properties of the support function that are employed by the Titanic algorithm:
Let (G, M, I) be a formal context $X, Y \subseteq M$. Then it holds:

1) $X \subseteq Y \Longrightarrow \operatorname{supp}(X) \geq \operatorname{supp}(Y)$
2) $X^{\prime \prime}=Y^{\prime \prime} \Longrightarrow \operatorname{supp}(X)=\operatorname{supp}(Y)$
3) $X \subseteq Y \wedge \operatorname{supp}(X)=\operatorname{supp}(Y) \Longrightarrow X^{\prime \prime}=Y^{\prime \prime}$

Solution:

1. Let $X \subseteq Y$, then $Y^{\prime} \subseteq X^{\prime}$ holds as we saw in Exercise Sheet 1. This implies, $\operatorname{supp}(Y)=\frac{\left|Y^{\prime}\right|}{|G|} \leq \frac{\left|X^{\prime}\right|}{|G|}=\operatorname{supp}(X)$
2. $X^{\prime \prime}=Y^{\prime \prime} \Longrightarrow \operatorname{supp}(X)=\operatorname{supp}(Y)$ $X^{\prime \prime}=Y^{\prime \prime} \Longleftrightarrow X^{\prime \prime \prime}=Y^{\prime \prime \prime} \Longleftrightarrow X^{\prime}=Y^{\prime} \Longrightarrow \operatorname{supp}(X)=\frac{\left|X^{\prime}\right|}{|G|}=\frac{\left|Y^{\prime}\right|}{|G|}=\operatorname{supp}(|Y|)$.
3. $X \subseteq Y \wedge \operatorname{supp}(X)=\operatorname{supp}(Y) \Longrightarrow X^{\prime \prime}=Y^{\prime \prime}$
$\operatorname{supp}(X)=\operatorname{supp}(Y) \Longrightarrow\left|X^{\prime}\right|=\left|Y^{\prime}\right|$ and $X \subseteq Y \Longrightarrow X^{\prime} \supseteq Y^{\prime}$. Hence $X^{\prime}=Y^{\prime}$, since X^{\prime} and Y^{\prime} are finite. It follows, $X^{\prime \prime}=Y^{\prime \prime}$.

Exercise 3 (computing concept intents with Titanic)
The following context contains transactions in a supermarket. Compute the closure system of all concept intents using the Titanic algorithm. (hint: use the table structure from the example computation in the lecture slides)

		$\begin{aligned} & \widehat{e} \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$			(1) 0 0 0 0 0 0 0 8 8
t_{1}	\times	\times	\times		
t_{2}			\times	\times	
t_{3}		\times	\times	\times	
t_{4}	\times	\times			\times
t_{5}			\times		\times
t_{6}		\times	\times	\times	
t_{7}	\times	\times			
t_{8}			\times	\times	

Solution:

In the first pass, the algorithm deals with the empty set and singletons, all 1-sets. It returns the results for $\mathrm{k}=0$ and $\mathrm{k}=1$:

$\mathrm{k}=0: \quad$| step 1 | | step2 |
| :---: | :---: | :---: |
| x | x.s | $x \in k_{k} ?$ |
| \emptyset | 1 | yes |
| | | |

steps 4+5		step 7	step 9
X	$X . p _s$	$X . s$	$X \in K_{k} ?$
$\{a\}$	1	$3 / 8$	yes
$\{b\}$	1	$5 / 8$	yes
$\{\mathrm{c}\}$	1	$6 / 8$	yes
$\{d\}$	1	$4 / 8$	yes
$\{\mathrm{e}\}$	1	$2 / 8$	yes

Step 8 returns: \emptyset.closure $\leftarrow \emptyset$

Step 8 returns:
$\mathrm{k}=3:$

steps 12		step 7	step 9
X	$X \cdot p _s$	$X . s$	$X \in K_{k} ?$
$\{\mathrm{a}, \mathrm{c}, \mathrm{e}\}$	$1 / 8$	0	yes
$\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}$	0	0	no
$\{\mathrm{b}, \mathrm{c}, \mathrm{e}\}$	$1 / 8$	0	yes
$\{\mathrm{b}, \mathrm{d}, \mathrm{e}\}$	0	0	no

$\mathrm{k}=4$:
Step 12: returns the empty set. Hence there is nothing to WEIGH in Step 7. Step 9 sets k_4 $=\emptyset$; and in step 10 , the loop is exited.
Step 8 returns:
$\{a, c, e\}$.closure $\leftarrow\{a, b, c, d, e\}$
$\{b, c, e\}$.closure $\leftarrow\{a, b, c, d, e\}$

Step 14: Collects all concept intents:

