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I How is a n · m matrix stored in memory?

I How is an array stored in Java?
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Revision

I Used Data Types
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Clauses and Conjunctive Normal Forms

I Definition

. A clause is a generalized disjunction [L1, . . . , Ln], n ≥ 0,
where every Li , 1 ≤ i ≤ n, is a literal

I Definition

. A formula is in conjunctive normal form (clause form, CNF) iff
it is of the form 〈C1, . . . , Cm〉, m ≥ 0, and every Cj , 1 ≤ j ≤ m, is a clause

I Agreement

. An interpretation for a formula F can be represented as sequence of literals.
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Used Data Structures

I (Multi-)Sets for clauses and the formula

I Sequences for the interpretation
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Used Algorithms

I Unit propagation

I Clause learning
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Implementing Interpretations
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How to Implement an Interpretation

I Given: the input formula F

. with the variables n = |RF |

I For a clause, an interpretation J is usually used

. to test J |= C for some clause, or

. to compute C|J .

I How to implement an interpretation?
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Implement an Interpretation as Sequence
space saving

array S

contains (integer a)
1 for i in S
2 if a = i then return true
3 return false

insert (integer a)
1 if not contains(a) then
2 append a to S

erase (integer a)
1 if contains(a) then
2 remove a from

time saving

array S
array T with n elements

contains (integer a)
1 return T[a]

insert (integer a)
1 if not contains(a) then
2 append a to S
3 T [a] = true

erase (integer a)
1 if contains(a) then
2 remove a from S
3 T [a] = false
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Implement an Interpretation as Sequence

I What is the complexity of erasing an element from a sequence?

I How about in case of an interpretation?
. More particularly in the case of the CDCL algorithm?
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Decision Levels and Reasons

I The decision level denotes how many decision literals have already been added
to the interpretation J once the literal x has been added.

I Definition
. The decision level of a literal x with respect to an interpretation J is the

number of decision literals that have been added to this interpretation once
the literal x has been added: |{y | ẏ ∈ (J′x) where J = J′xJ′′}|.

. decision level(J, x) = |{y | ẏ ∈ (J′x) and J = J′xJ′′}|

I or
. decision level(J, v) = |{y | ẏ ∈ (J′x) and J = J′xJ′′ and var(x) = v}|.

I Definition
. A clause C is called a reason clause of a literal x with respect to an

interpretation J if there is an interpretation J′ with J = J′J′′ and the reduct
C|J′ with respect to the interpretation J′ is the unit clause C|J′ = (x).

I For convenience we introduce a function that maps to the (set of) reason(s):
reason(F , J, x).

Steffen Hölldobler and Norbert Manthey
SAT Solving – Implementation 16



Decision Levels and Reasons

I The decision level denotes how many decision literals have already been added
to the interpretation J once the literal x has been added.

I Definition
. The decision level of a literal x with respect to an interpretation J is the

number of decision literals that have been added to this interpretation once
the literal x has been added: |{y | ẏ ∈ (J′x) where J = J′xJ′′}|.
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. decision level(J, x) = |{y | ẏ ∈ (J′x) and J = J′xJ′′}|
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Conflict Literal

I Given a conflict clause C with respect to an interpretation J, the conflict literal
x ∈ C is the literal of the clause C whose complement ¬x has the rightmost
position in the sequence representation of the interpretation.

I Definition
. Given a conflict clause C, a literal x ∈ C and an interpretation J with

J = J′¬xJ′′, then x is the conflict literal of C, if (C \ {x}) ∩ (J′′) = ∅.

I Conflict Level
. The conflict level of a conflict clause C with respect to an interpretation J is

the highest decision level of all the literals x that occur in the clause.
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Implementing Unit Propagation
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Pseudo Code for Unit Propagation

UP (CNF formula F , interpretation J)

Input: A formula F in CNF, an interpretation J
Output: An extended interpretation J

1 P := () // start with empty interpretation
2 while (x) ∈ F |JP do // unit rule
3 P := Px // extend propagated literals
4 return (JP)

I C source code is still different
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Pseudo Code for Unit Propagation

UP (CNF formula F , interpretation J)

Input: A formula F in CNF, an interpretation J
Output: An extended interpretation J

1 P := () // start with empty interpretation
2 while (x) ∈ F |JP and not [] ∈ F |JP do // unit rule
3 P := Px // extend propagated literals

3b reason(x) = C // set reason
4 return (JP)
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Implementing Clause Learning
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Clause Learning

I Properties of a learned clause

I Short

I Good backjump distance

I Should trigger unit propagation
. Such a clause is called asserting
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Clause Learning Algorithm

ConflictAnalysis (CNF formula F , interpretation J, conflict clause C)

Input: A formula F in CNF, an interpretation J, clause C
Output: A learned clause D

1 D := C // start with the conflict
2 while some condition do // depending on the wanted clause
3 while J = J′L and ¬L 6∈ D do // unit rule
4 J = J′ // remove last literal from J
4 if reason(F , J, L) 6= ∅ // depending on condition always true
5 D := D ⊗ reason(F , J, L) // resolve with a reason
6 return D

I Usually, pick first reason (the one stored during UP)

I Invariant: C has at least two literals of the conflict level

I Invariant: D is always falsified, D|J = [].
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Clause Learning Algorithm

ConflictAnalysis (CNF formula F , interpretation J, conflict clause C)

Input: A formula F in CNF, an interpretation J, clause C
Output: A learned clause D

1 D := C // start with the conflict
2 while some condition do // depending on the wanted clause
3 while J = J′L and ¬L 6∈ D do // unit rule
4 J = J′ // remove last literal from J
4 if reason(F , J, L) 6= ∅ // depending on condition always true
5 D := D ⊗ reason(F , J, L) // resolve with a reason
6 return D

I Possible abort conditions
. Decision clause:

II for all L ∈ D there is no reason, reason(F , J,¬L) = ∅

. 1st UIP clause (unique implication point):
II exactly one literal of the highest decision level left

I 1st UIP clause is constructed faster, and usually shorter

I Not discussed here: clause minimization
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Clause Learning Algorithm

ConflictAnalysis (CNF formula F , interpretation J, conflict clause C)
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I Can this algorithm be implemented faster?

I Assume we are interested in the 1st UIP clause!

I D is a set of literals

I D can be represented implicitely by an occurence array and J
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Choosing Data Structures
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Data structures

I Things to worry about for efficiency:
. Number of memory accesses
. Order of memory locations to be accessed
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I pseudoRandom: random cache line, multiple accesses

I prefetching: tell the memory where the X-th next access will be
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Data structures

I Iterate through data structures linearly, use arrays

I Reduce number of memory accesses
. Blocking Literal in watch list

I Store data about variables together in one block
. Assignment, reason, decision level
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