

SAT Solving – Implementation

Steffen Hölldobler and Norbert Manthey International Center for Computational Logic Technische Universität Dresden Germany

Data structures

Algorithms

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Warm Up

How is an array stored in memory?

Warm Up

- How is an array stored in memory?
- ▶ How is a *n* · *m* matrix stored in memory?

Warm Up

- How is an array stored in memory?
- ▶ How is a *n* · *m* matrix stored in memory?
- How is an array stored in Java?

Revision

Used Data Types

Clauses and Conjunctive Normal Forms

Definition

▷ A clause is a generalized disjunction $[L_1, ..., L_n]$, $n \ge 0$, where every L_i , $1 \le i \le n$, is a literal

Clauses and Conjunctive Normal Forms

Definition

▷ A clause is a generalized disjunction $[L_1, ..., L_n]$, $n \ge 0$, where every L_i , $1 \le i \le n$, is a literal

Definition

▷ A formula is in conjunctive normal form (clause form, CNF) iff it is of the form $\langle C_1, \ldots, C_m \rangle$, $m \ge 0$, and every C_j , $1 \le j \le m$, is a clause

Agreement

▷ An interpretation for a formula *F* can be represented as sequence of literals.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Used Data Structures

(Multi-)Sets for clauses and the formula

Sequences for the interpretation

Used Algorithms

Unit propagation

Clause learning

Implementing Interpretations

How to Implement an Interpretation

- ▶ Given: the input formula *F*
 - ▷ with the variables $n = |\mathcal{R}_F|$
- ▶ For a clause, an interpretation *J* is usually used
 - ▷ to test $J \models C$ for some clause, or
 - ▷ to compute $C|_J$.
- How to implement an interpretation?

space saving

array S

contains (integer a)

- 1 for *i* in *S*
- ² if a = i then return true
- 3 return false

insert (integer a)

- if not contains(a) then
- ² append *a* to *S*

erase (integer a)

- i if contains(a) then
- ² remove *a* from

space saving **array** S

contains (integer a)

- 1 for *i* in *S*
- ² if a = i then return true
- 3 return false

insert (integer a)

- if not contains(a) then
- ² append *a* to *S*

erase (integer a)

- if contains(a) then
- ² remove *a* from

time saving array S array T with *n* elements

contains (integer a)

1 return T[a]

insert (integer a)

- if not contains(a) then
- ² append *a* to *S*
- ³ *T*[*a*] = true

erase (integer a)

- if contains(a) then
- ² remove *a* from *S*
- 3 T[a] = false

What is the complexity of erasing an element from a sequence?

- What is the complexity of erasing an element from a sequence?
- How about in case of an interpretation?
 - More particularly in the case of the CDCL algorithm?

Decision Levels and Reasons

▶ The *decision level* denotes how many decision literals have already been added to the interpretation *J* once the literal *x* has been added.

Decision Levels and Reasons

- ▶ The *decision level* denotes how many decision literals have already been added to the interpretation *J* once the literal *x* has been added.
- Definition
 - ▷ The decision level of a literal x with respect to an interpretation J is the number of decision literals that have been added to this interpretation once the literal x has been added: $|\{y \mid \dot{y} \in (J'x) \text{ where } J = J'xJ''\}|$.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Decision Levels and Reasons

- ▶ The *decision level* denotes how many decision literals have already been added to the interpretation *J* once the literal *x* has been added.
- Definition
 - ▷ The decision level of a literal x with respect to an interpretation J is the number of decision literals that have been added to this interpretation once the literal x has been added: $|\{y \mid \dot{y} \in (J'x) \text{ where } J = J'xJ''\}|$.

▷ decision_level
$$(J, x) = |\{y \mid \dot{y} \in (J'x) \text{ and } J = J'xJ''\}|$$

or

▷ decision_level(J, v) = $|\{y \mid \dot{y} \in (J'x) \text{ and } J = J'xJ'' \text{ and } var(x) = v\}|$.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Decision Levels and Reasons

▶ The *decision level* denotes how many decision literals have already been added to the interpretation *J* once the literal *x* has been added.

Definition

▷ The decision level of a literal x with respect to an interpretation J is the number of decision literals that have been added to this interpretation once the literal x has been added: $|\{y \mid \dot{y} \in (J'x) \text{ where } J = J'xJ''\}|$.

▷ decision_level
$$(J, x) = |\{y \mid \dot{y} \in (J'x) \text{ and } J = J'xJ''\}|$$

or

▷ decision_level $(J, v) = |\{y \mid \dot{y} \in (J'x) \text{ and } J = J'xJ'' \text{ and } var(x) = v\}|.$

- Definition
 - ▷ A clause *C* is called a reason clause of a literal *x* with respect to an interpretation *J* if there is an interpretation *J'* with J = J'J'' and the reduct $C|_{J'}$ with respect to the interpretation *J'* is the unit clause $C|_{J'} = (x)$.
- ► For convenience we introduce a function that maps to the (set of) reason(s): reason(F, J, x).

Conflict Literal

Given a conflict clause C with respect to an interpretation J, the conflict literal x ∈ C is the literal of the clause C whose complement ¬x has the rightmost position in the sequence representation of the interpretation.

Conflict Literal

▶ Given a conflict clause *C* with respect to an interpretation *J*, the conflict literal $x \in C$ is the literal of the clause *C* whose complement $\neg x$ has the rightmost position in the sequence representation of the interpretation.

Definition

▷ Given a conflict clause *C*, a literal $x \in C$ and an interpretation *J* with $J = J' \neg x J''$, then *x* is the conflict literal of *C*, if $(C \setminus \{x\}) \cap (J'') = \emptyset$.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Conflict Literal

Given a conflict clause C with respect to an interpretation J, the conflict literal x ∈ C is the literal of the clause C whose complement ¬x has the rightmost position in the sequence representation of the interpretation.

Definition

▷ Given a conflict clause *C*, a literal $x \in C$ and an interpretation *J* with $J = J' \neg x J''$, then *x* is the conflict literal of *C*, if $(C \setminus \{x\}) \cap (J'') = \emptyset$.

Conflict Level

▶ The conflict level of a conflict clause *C* with respect to an interpretation *J* is the highest decision level of all the literals *x* that occur in the clause.

Implementing Unit Propagation

Pseudo Code for Unit Propagation

UP (CNF formula F , interpretation J)	
Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> Output: An extended interpretation <i>J</i>	
1 P := ()	// start with empty interpretation
2 while $(x) \in F _{JP}$ do	// unit rule
P := Px	// extend propagated literals
4 return (<i>JP</i>)	

C source code is still different

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

Pseudo Code for Unit Propagation

UP (CNF formula F , interpretation J)	
Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> Output: An extended interpretation <i>J</i>	
1 $P := ()$ 2 while $(x) \in F _{JP}$ and not $[] \in F _{JP}$ do 3 $P := Px$ 4 return (JP)	<pre>// start with empty interpretation // unit rule // extend propagated literals</pre>

C source code is still different

Pseudo Code for Unit Propagation

UP (CNF formula F, interpretation J)	
Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> Output: An extended interpretation <i>J</i>	
1 $P := ()$ 2 while $(x) \in F _{JP}$ and not $[] \in F _{JP}$ do 3 $P := Px$ 3b $reason(x) = C$ 4 return (JP)	// start with empty interpretation // unit rule // extend propagated literals // set reason

C source code is still different

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

Implementing Clause Learning

Properties of a learned clause

- Properties of a learned clause
- Short

- Properties of a learned clause
- Short
- Good backjump distance

- Properties of a learned clause
- Short
- Good backjump distance
- Should trigger unit propagation
 - Such a clause is called asserting

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	<pre>// depending on the wanted clause</pre>
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

Usually, pick first reason (the one stored during UP)

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

- Usually, pick first reason (the one stored during UP)
- Invariant: C has at least two literals of the conflict level
- ▶ Invariant: *D* is always falsified, $D|_J = []$.

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

Possible abort conditions

- ▷ Decision clause:
 - ▶ for all $L \in D$ there is no reason, reason($F, J, \neg L$) = Ø

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

Possible abort conditions

- ▷ Decision clause:
 - ▶ for all $L \in D$ there is no reason, reason $(F, J, \neg L) = \emptyset$
- ▶ 1st UIP clause (unique implication point):
 - exactly one literal of the highest decision level left

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

Possible abort conditions

▷ Decision clause:

▶ for all $L \in D$ there is no reason, reason($F, J, \neg L$) = Ø

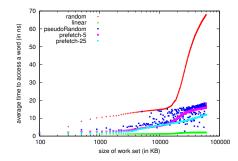
- Ist UIP clause (unique implication point):
 - exactly one literal of the highest decision level left
- 1st UIP clause is constructed faster, and usually shorter
- Not discussed here: clause minimization

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

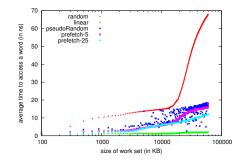
- Can this algorithm be implemented faster?
- Assume we are interested in the 1st UIP clause!
- D is a set of literals

ConflictAnalysis (CNF formula <i>F</i> , interpretation <i>J</i> , conflict clause <i>C</i>) Input: A formula <i>F</i> in CNF, an interpretation <i>J</i> , clause <i>C</i> Output: A learned clause <i>D</i>	
2 while some condition do	// depending on the wanted clause
while $J = J'L$ and $\neg L \not\in D$ do	// unit rule
4 $J = J'$	// remove last literal from J
4 if reason(F, J, L) $\neq \emptyset$	// depending on condition always true
5 $D := D \otimes \operatorname{reason}(F, J, L)$	// resolve with a reason
6 return D	

- Can this algorithm be implemented faster?
- Assume we are interested in the 1st UIP clause!
- D is a set of literals
- D can be represented implicitely by an occurence array and J


Choosing Data Structures

Data structures


- Things to worry about for efficiency:
 - Number of memory accesses
 - Order of memory locations to be accessed

Steffen Hölldobler and Norbert Manthey SAT Solving – Implementation

Data structures

pseudoRandom: random cache line, multiple accesses

prefetching: tell the memory where the X-th next access will be

Data structures

- Iterate through data structures linearly, use arrays
- ► Reduce number of memory accesses
 - Blocking Literal in watch list
- Store data about variables together in one block
 - Assignment, reason, decision level

