
DATABASE THEORY

Lecture 9: First-Order Expressiveness /
Introduction to Datalog

Markus Krötzsch

TU Dresden, 9 June 2016

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 9 June 2016 Database Theory slide 2 of 31

Review: EF Games

Ehrenfeucht-Fraïssé games characterise expressivity of FO formulas:

• the quantifier rank needed to distinguish structure
corresponds to

• the number of rounds needed by Spoiler to win the game

Spoiler Duplicator

Markus Krötzsch, 9 June 2016 Database Theory slide 3 of 31

Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of databases I1,I2,I3, . . . ∈ CM and
databases J1,J2,J3, . . . < CM, such that Ii ∼i Ji

{ for any formula ϕ (however large its quantifier rank r), there is a
counterexample Ir ∈ CM and Jr < CM that ϕ cannot distinguish

Problems:

• How to find such sequences of Ii and Ji?
{ No general strategy exists

• Given suitable sequences, how to show that Ii ∼i Ji?
{ Can be difficult, but doable for some special cases

Markus Krötzsch, 9 June 2016 Database Theory slide 4 of 31

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition
A structure I is a linear order if it has a single binary predicate ≤
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6
L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7

Spoiler can win the 3-round EF game:

Spoiler plays 4 in L7
Duplicator plays 4 in L6: Spoiler plays 6 in L7

Duplicator plays 5 in L6: Spoiler plays 5 in L7 and wins
Duplicator plays 6 in L6: Spoiler plays 7 in L7 and wins

Duplicator plays 3 in L6: symmetric game (flipped horizontally)

Markus Krötzsch, 9 June 2016 Database Theory slide 5 of 31

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition
A structure I is a linear order if it has a single binary predicate ≤
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7
L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

Spoiler cannot win the 3-round EF game:

Spoiler plays 4 in L8: Duplicator plays 4 in L7
Spoiler plays 6 in L8: Duplicator plays 6 in L7; spoiler cannot win
Spoiler plays 7 in L8: Duplicator plays 6 in L7; spoiler cannot win

Other cases similar: Spoiler never wins

Markus Krötzsch, 9 June 2016 Database Theory slide 6 of 31

EF Games and Linear Orders

Theorem
The following are equivalent:

• Lm ∼r Ln

• either (1) m = n, or (2) m ≥ 2r − 1 and n ≥ 2r − 1

Proof: see board

Markus Krötzsch, 9 June 2016 Database Theory slide 7 of 31

FO-Definability of Parity

Theorem
Parity is not FO-definable for linear orders, hence it is not
FO-definable for arbitrary databases.

Proof:

• Suppose for a contradiction that Parity is FO-definable by
some query ϕ.

• Let r be the quantifier rank of ϕ.

• Consider databases Lm and Ln with m = 2r and n = 2r + 1.

• We know that Lm ∼r Ln, and therefore Lm ≡r Ln.

• Hence, Lm |= ϕ if and only if Ln |= ϕ.

• But Lm ∈ Parity while Ln < Parity.

• Therefore, ϕ does not FO-define Parity. Contradiction.

Markus Krötzsch, 9 June 2016 Database Theory slide 8 of 31

FO-Definability of Connectivity

The Connectivity problem over finite graphs is as follows:
• Input: A finite graph (relational structure with one binary

relation “edge”)
• Output: “true” if there is an (undirected) path between any pair

of vertices

Theorem
Connectivity is not FO-definable.

Proof:
• Suppose for a contradiction that Connectivity is

FO-definable using a query ϕ.
• We show that this would make Parity FO-definable on linear

orders.
• For a linear order L with order predicate ≤, we define a finite

graph G(L) over a binary predicate “edge” such that G(L) is
connected if and only if L has an even number of elements.

Markus Krötzsch, 9 June 2016 Database Theory slide 9 of 31

Defining a Graph From a Linear Order

We use abbreviations for the following FO formulas:

succ[x, y] = (x ≤ y) ∧ ¬(y ≤ x) ∧ y is the successor of x

∀z.(z ≤ x ∨ y ≤ z)

min[x] = ∀z.x ≤ z x is the first element

max[x] = ∀z.z ≤ x x is the last element

succ◦[x, y] = succ[x, y] ∨ (max[x] ∧min[y]) circular version of succ

We now define the formula ψ that derives edges from a linear order:

∀x, y.edge(x, y)↔ ∃z.succ◦[x, z] ∧ succ◦[z, y]

Markus Krötzsch, 9 June 2016 Database Theory slide 10 of 31

Illustration: Graphs From Linear Orders

1 2 3 4 5

61 2 3 4 5

1
2

3

4

5

6

1

2

3

4

5

1

2

3

4

5

1
3

5 6

2

4

edge

succ

Markus Krötzsch, 9 June 2016 Database Theory slide 11 of 31

Completing the Proof

Observation:
The graph G(L) is connected if and only if L has odd parity.

Therefore, if ϕ FO-defines Connectivity on graphs with
predicate edge, then ¬(ϕ ∧ ψ) FO-defines Parity on linear orders.

Since Parity is not FO-definable, no such ϕ can exist.

Markus Krötzsch, 9 June 2016 Database Theory slide 12 of 31

Beyond Linear Orders: Locality

Intuition: Duplicator can win an EF game if selected nodes have
the same “neighbourhood”
{ let’s define this for graphs (structures with binary predicates)

Definition
Consider a graph G. For a natural number d ≥ 0 and a vertex v, the
d-neighbourhood of v, N(v, d), is defined inductively:

• N(v, 0) = {v}
• N(v, d + 1) = N(v, d) ∪

{w | w is a direct neighbour of some w′ ∈ N(v, d)}
Two vertices v and w have the same d-type if the subgraphs G|N(v,d)

and G|N(w,d) are isomorphic.
Two graphs are d-equivalent if, for every d-type, they have the
same number of d-neighbourhoods of this type.

Markus Krötzsch, 9 June 2016 Database Theory slide 13 of 31

Locality and FO-definability

A special case of Gaifman’s Locality Theorem of first-order logic:

Theorem
For every integer r ≥ 1:

• if G1 is 3r−1-equivalent to G2

• then G1 ∼r G2, and thus G1 ≡r G2

{ Intuition: FO can only express local properties

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of graphs I1,I2,I3, . . . ∈ CM and graphs
J1,J2,J3, . . . < CM, such that Ii is i-equivalent to Ji

{ for any formula ϕ (however large its quantifier rank r), there is a
counterexample I3r−1 ∈ CM and J3r−1 < CM that ϕ cannot distinguish
Markus Krötzsch, 9 June 2016 Database Theory slide 14 of 31

Connectivity is not FO-definable (Proof 2)

Theorem
Connectivity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2(d + 1)4(d + 1) 2(d + 1)

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent

Markus Krötzsch, 9 June 2016 Database Theory slide 15 of 31

2-Colourability

Theorem
2-Colourability is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r (odd number)

Id Jd

3d6d 3d

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent

Markus Krötzsch, 9 June 2016 Database Theory slide 16 of 31

Acyclicity

Theorem
Acyclicity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2d + 24d + 2 2d

• d-types are paths of ≤ 2d + 1 nodes
• Id and Jd are d-equivalent

Markus Krötzsch, 9 June 2016 Database Theory slide 17 of 31

Summary: Limits of FO-Queries
FO queries (and hence Relational Calculus) cannot express
properties that require a “global” view:

• properties where one needs to follow paths
• properties where one needs to count elements

Remember Lecture 1?

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

What about all stops reachable from Helmholtzstr.?

{ Not expressible in Relational Calculus

Yet, all examples we saw are in P

{ Is there another query language that could help us?
Markus Krötzsch, 9 June 2016 Database Theory slide 18 of 31

Introduction to Datalog

Markus Krötzsch, 9 June 2016 Database Theory slide 19 of 31

Introduction to Datalog
Datalog introduces recursion into database queries
• Use deterministic rules to derive new information from given facts
• Inspired by logic programming (Prolog)
• However, no function symbols and no negation
• Studied in AI (knowledge representation) and

in databases (query language)

Example: transitive closure C of a binary relation r

C(x, y)← r(x, y)

C(x, z)← C(x, y) ∧ r(y, z)

Intuition:
• some facts of the form r(x, y) are given as input, and the rules

derive new conclusions C(x, y)
• variables range over all possible values (implicit universal

quantifier)
Markus Krötzsch, 9 June 2016 Database Theory slide 20 of 31

Syntax of Datalog

Recall: A term is a constant or a variable. An atom is a formula of
the form R(t1, . . . , tn) with R a predicate symbol (or relation) of arity
n, and t1, . . . , tn terms.

Definition
A Datalog rule is an expression of the form:

H ← B1 ∧ . . . ∧ Bm

where H and B1, . . . , Bm are atoms. H is called the head or
conclusion; B1 ∧ . . . ∧ Bm is called the body or premise. A rule with
empty body (m = 0) is called a fact. A ground rule is one without
variables (i.e., all terms are constants).

A set of Datalog rules is a Datalog program.

Markus Krötzsch, 9 June 2016 Database Theory slide 21 of 31

Datalog: Example

father(alice, bob)

mother(alice, carla)

mother(evan, carla)

father(carla, david)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

Ancestor(x, y)← Parent(x, y)

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Markus Krötzsch, 9 June 2016 Database Theory slide 22 of 31

Datalog Semantics by Deduction

What does a Datalog program express?
Usually we are interested in entailed ground atoms

What can be entailed? Informally:

• Restrict to set of constants that occur in program (finite)
{ universeU

• Variables can represent arbitrary constants from this set
{ ground substitutions map variables to constants

• A rule can be applied if its body is satisfied for some ground
substitution
Example: rule Parent(x, y)← mother(x, y) can be applied to
mother(alice, carla) under substitution {x 7→ alice, y 7→ carla}

• If a rule is applicable under some ground substitution, then
the according instance of the rule head is entailed.

Markus Krötzsch, 9 June 2016 Database Theory slide 23 of 31

Datalog Semantics by Deduction (2)

An inductive definition of what can be derived:

Definition
Consider a Datalog program P. The set of ground atoms that can
be derived from P is the smallest set of atoms A for which there is a
rule H ← B1 ∧ . . . ∧ Bn and a ground substitution θ such that

• A = Hθ, and

• for each i ∈ {1, . . . , n}, Biθ can be derived from P.

Notes:

• n = 0 for ground facts, so they can always be derived
(induction base)

• if variables in the head do not occur in the body, they can be
any constant from the universe

Markus Krötzsch, 9 June 2016 Database Theory slide 24 of 31

Datalog Deductions as Proof Trees

We can think of deductions as tree structures:

Ancestor(alice, david)

Parent(alice, carla) Ancestor(carla, david)

Parent(carla, david)

father(carla, david)

mother(alice, carla)

(8)
{x 7→ alice, y 7→ carla, z 7→ david}

(6)
{x 7→ alice, y 7→ carla}

(7)
{x 7→ carla, y 7→ david}

(5)
{x 7→ carla, y 7→ david}

(2)

(4)

(1) father(alice, bob)

(2) mother(alice, carla)

(3) mother(evan, carla)

(4) father(carla, david)

(5) Parent(x, y)← father(x, y)

(6) Parent(x, y)← mother(x, y)

(7) Ancestor(x, y)← Parent(x, y)

(8) Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

Markus Krötzsch, 9 June 2016 Database Theory slide 25 of 31

Datalog Semantics by Least Fixed Point

Instead of using substitutions, we can also ground programs:

Definition
The grounding ground(P) of a Datalog program P is the set of all
ground rules that can be obtained from rules in P by uniformly
replacing variables with constants from the universe.

Derivations are described by the immediate consequence operator
TP that maps sets of ground facts I to sets of ground facts TP(I):

• TP(I) = {H | H ← B1 ∧ . . . ∧ Bn ∈ ground(P) and B1, . . . , Bn ∈ I}
• Least fixed point of TP: smallest set L such that TP(L) = L

• Bottom-up computation: T0
P = ∅ and T i+1

P = TP(T i
P)

• The least fixed point of TP is T∞P =
⋃

i≥0 T i
P (exercise)

Observation: Ground atom A is derived from P if and only if A ∈ T∞P

Markus Krötzsch, 9 June 2016 Database Theory slide 26 of 31

Datalog Semantics by Least Model

We can also read Datalog rules as universally quantified
implications

Example: Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)
corresponds to implication

∀x, y, z.Parent(x, y) ∧ Ancestor(y, z)→ Ancestor(x, z).

A set of FO implications may have many models
{ consider least model over the domain defined by the universe

Theorem
A fact is entailed by the least model of a Datalog program if and
only if it can be derived from the Datalog program.

Markus Krötzsch, 9 June 2016 Database Theory slide 27 of 31

Datalog Semantics: Overview

There three equivalent ways of defining Datalog semantics:

• Proof-theoretic: What can be proven deductively?

• Operational: What can be computed bottom up?

• Model-theoretic: What is true in the least model?

In each case, we restrict to the universe of given constants.
{ similar to active domain semantics in databases

Markus Krötzsch, 9 June 2016 Database Theory slide 28 of 31

Datalog as a Query Language

How can we use Datalog to query databases?
{ View database as set of ground facts
{ Specify which predicate yields the query result

Definition
A Datalog query is a pair 〈R, P〉, where P is a Datalog program and
R is the answer predicate.
Results of the query: R-facts entailed by P

Datalog queries distinguish “given” relations from “derived” ones:

• predicates that occur in a head of P are
intensional database (IDB) predicates

• predicates that only occur in bodies are
extensional database (EDB) predicates

Requirement: database relations used as EDB predicates only

Markus Krötzsch, 9 June 2016 Database Theory slide 29 of 31

Datalog as a Generalisation of CQs

A conjunctive query ∃y1, . . . , ym.A1 ∧ . . . ∧ A` with answer variables
x1, . . . , xn can be expressed as a Datalog query 〈Ans, P〉 where P
has the single rule:

Ans(x1, . . . , xn)← A1 ∧ . . . ∧ A`

Unions of CQs can also be expressed (exercise)

Intuition: Datalog generalises UCQs with recursion

Open questions:

• How hard is it to answer Datalog queries?

• Can Datalog express all queries in P?

• What about query containment and equivalence?

Markus Krötzsch, 9 June 2016 Database Theory slide 30 of 31

Summary and Outlook

FO-queries can only express “local” properties

Possible proof techniques:

• Ehrenfeucht-Fraïssé Games

• Locality Theorems

• For more approaches see
Chapter 17 of [Abiteboul, Hull, Vianu 1994]

Datalog can overcome some of these limitations

Next topics:

• Complexity and expressive power of Datalog

• Implementation techniques for Datalog

Markus Krötzsch, 9 June 2016 Database Theory slide 31 of 31

