

Hannes Strass

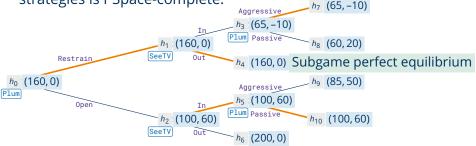
Faculty of Computer Science, Institute of Artificial Intelligence, Computational Logic Group

Playing Games: Alpha-Beta Tree Search

Lecture 4, 6th May 2024 // Algorithmic Game Theory, SS 2024

Previously ...

- Game trees are used to represent sequential (extensive form) games.
- Sequential games give rise to (different) strategic (normal form) games.
- In a game tree, a **strategy** assigns a move to each decision node.
- Backward induction can be used to solve sequential games.
- The subgame perfect equilibrium of a sequential game coincides with its backward induction solution.
- Geography is a game on graphs for which deciding existence of winning strategies is PSpace-complete.



Overview

Two-Player Zero-Sum Games

Alpha-Beta Pruning

Heuristics

Two-Player Zero-Sum Games

Zero-Sum Games

Definition

A game with players *P* is **zero-sum** iff for all outcomes $z \in Z$, $\sum_{i \in P} u_i(z) = 0$.

Note: Every combinatorial game is zero-sum, but not vice versa.

Examples: Penalties, Rock-Paper-Scissors, Chess, Go

In what follows, we will focus on two-player zero-sum games.

Observation

For a two-player zero-sum game (with $P = \{1, 2\}$), the payoffs $\mathbf{u} = (u_1, u_2)$ are fully specified by giving u_1 , as for every $z \in Z$ we have $u_2(z) = -u_1(z)$.

Two-Player Zero-Sum Sequential Games

We thus adapt our definition of sequential games with perfect information:

Definition

A two-player zero-sum sequential game with perfect information has:

- 1. The set $P = \{\max, \min\}$ of two (named) players.
- 2. A tuple $(M_{\text{max}}, M_{\text{min}})$ of sets of moves for each player; $M := M_{\text{max}} \cup M_{\text{min}}$.
- 3. A set *H* of histories, sequences $[m_1, \ldots, m_k]$ of moves $m_j \in M$.
- 4. A subset $Z \subseteq H$ of terminal histories.
- 5. A player function $p: H \setminus Z \rightarrow P$ (indicating whose turn it is).
- 6. A utility function $u_{\text{max}}: Z \to \mathbb{R}$ for player max.

Starting with the empty history [], in each history $h = [m_1, ..., m_k] \in H \setminus Z$, player i = p(h) chooses a move $m \in M_i$, leading to the history $[m_1, ..., m_k, m]$.

Histories and States

Typically, it is more useful to describe a game other than through histories:

Definition

A **state-based game model** consists of the following:

- A set S of **states** of the game, with **initial state** $S_0 \in S$, and functions:
- **TURN**: $S \rightarrow P$ saying whose turn it is in a state.
- **MOVES**: $S \rightarrow 2^M$ yielding the legal moves in a state.
- **RESULT**: $S \times M \rightarrow S$ yielding the result of a move in a state (the next state).
- **IS-TERMINAL**: $S \to \{\top, \bot\}$ indicating whether a state is terminal.
- **UTILITY**: $S \to \mathbb{R}$ giving a terminal state's payoff for max (else undefined).
- Each history leads to exactly one state. ([] leads to S_0 .)
- One state may be reached through different histories.

Example: A state in Chess is given by the locations of the pieces on the board.

State Spaces and Their Representation

Definition

The **state space graph** associated with a state-based game model is the edge-labelled directed graph (V, E) with $E \subseteq V \times M \times V$, where

- $V \subseteq S$ is the \subseteq -least set such that $S_0 \in V$, and: if $s \in V$ and $m \in MOVES(s)$, then RESULT $(s, m) \in V$;
- $(s_1, m, s_2) \in E$ iff **RESULT** $(s_1, m) = s_2$.
- The state space contains all states that are reachable from the initial state by sequences of legal moves.
- The state space can be huge: for Chess, there are at least 10⁴⁰ positions (states).
- We thus typically only search parts of the state space (game tree).

Representing Games for Search

We will assume that the game tree is not explicitly given, but implicitly specified by a state-based game model that is parsimoniously represented (e.g. using a game description language like Stanford University's GDL).

Assumption: Game Representation

A state-based game model can be represented such that:

- The set *S* of states is described as an efficiently decidable formal language.
- The functions TURN, MOVES, RESULT, IS-TERMINAL, and UTILITY can all be computed efficiently.
- The full description of the game model has a practical size.

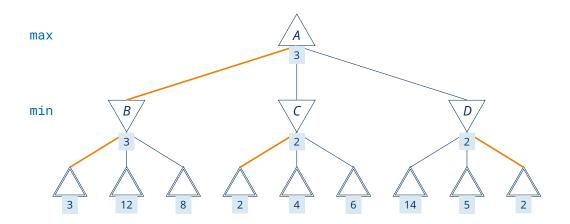
This assumption is especially relevant for games like Chess and Go, whose state-based models can be formalised (logically or through executable code), but whose game trees are too large to be explicitly represented.

Search in Game Trees

Recall: For combinatorial games, we used backward induction to solve them.

- For (general) zero-sum games, we also have to distinguish different utilities for the same player: Winning with 9 is better than winning with 1.
- This leads to a slightly more general algorithm: minimax search.
- Player max maximises their payoff u_{max} (also called the **value** of the game).
- Player min maximises their payoff $u_{\min} = -u_{\max}$, thus minimises u_{\max} .
- Each player knows that the other player maximises/minimises and takes this into account accordingly.

Minimax Tree Search: Example



Minimax Value of a Game

Definition

For a (state-based model of a) game, the **minimax value** of a state $s \in S$ is

The **minimax value of the game** is **minimax**(S_0) for S_0 the initial state.

- The minimax decision at each node is the move leading to the maximal (resp. minimal) payoff in the next node.
- This definition of the optimal game value yields optimal responses of each player given that the respective other player also plays optimally.

Minimax Tree Search: Algorithm

```
function minimax-search(s: state) {
                                                   // allows to start search in an arbitrary state s
    if TURN(s) = max then \{ (v, m) := max-value(s) \} else \{ (v, m) := min-value(s) \}
    return m }
                                                                            // return best move in s
function max-value(s: state) {
    if is-terminal(s) then return (utility(s), null)
                                                                        // base case: terminal state
    (v^*, m^*) := (-\infty, \mathbf{null})
                                                                      // initialise current maximum
    foreach m \in MOVES(s) do {
                                                                                     // try all moves
                                                                                   // simulate move
         (v', m') := \min\text{-value}(RESULT(s, m))
         if v' > v^* then (v^*, m^*) := (v', m) }
                                                                       // update current maximum
    return (v^*, m^*) }
                                                                                // return maximum
function min-value(s: state) {
    if is-terminal(s) then return (utility(s), null)
    (v^*, m^*) := (+\infty, \mathbf{null})
    foreach m \in MOVES(s) do {
         (v', m') := max-value(RESULT(s, m))
         if v' < v^* then (v^*, m^*) := (v', m) }
    return (v*, m*) }
```


Minimax Tree Search: Complexity

Proposition

For a branching factor of b (maximal number of moves) and a depth of d (maximal length of histories), minimax search visits $O(b^d)$ terminal nodes.

→ Minimax tree search is impractical for complex games.

Example

Chess has a branching factor of about 35 and average game length of about 80 ply (moves of a single player), so running minimax search to the leaves would need to expand $35^{80} \approx 10^{123}$ nodes.

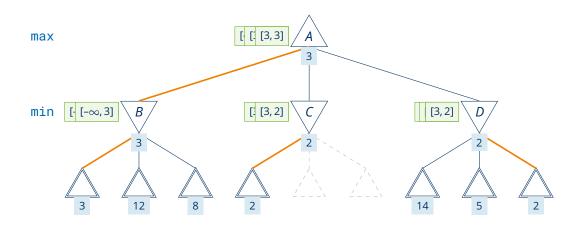
There are at least two possible ways of reducing b^d :

- Reducing b: Do we really have to try out all possible moves?
 → alpha-beta pruning
- Reducing d: Do we really have to play the game until the end?

 → heuristic evaluation of states

Alpha-Beta Pruning

Alpha-Beta Pruning: Example



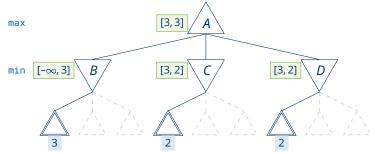
Alpha-Beta Tree Search: Algorithm

```
function alpha-beta-search(s: state) { if TURN(s) = max then
     (v,m) := \max \text{-value}(s,-\infty,+\infty) \text{ else } (v,m) := \min \text{-value}(s,-\infty,+\infty) \text{ ; return } m \text{ } \}
function max-value(s: state, a: \mathbb{R}_{+\infty}, \beta: \mathbb{R}_{+\infty}) {
     if is-terminal(s) then return (utility(s), null)
                                                                                         // base case: terminal state
     (v^*, m^*) := (-\infty, \mathbf{null})
                                                                                       // initialise current maximum
     foreach m \in MOVES(s) do {
                                                                                                          // try all moves
                                                                                                        // simulate move
           (v', m') := \min\text{-value}(\text{RESULT}(s, m), \alpha, \beta)
           if v' > v^* then \{ (v^*, m^*) := (v', m) ; \alpha := \max(\alpha, v^*) \}
                                                                                          // update maximum and \alpha
           if v^* \geq \beta then return (v^*, m^*) }
                                                                                          // prune irrelevant subtree
     return (v^*, m^*) }
                                                                                                    // return maximum
function min-value(s: state, \alpha: \mathbb{R}_{\pm\infty}, \beta: \mathbb{R}_{\pm\infty}) {
     if is-terminal(s) then return (utility(s), null)
     (v^*, m^*) := (+\infty, \mathbf{null})
     foreach m \in MOVES(s) do {
           (v', m') := \text{max-value}(\text{RESULT}(s, m), \alpha, \beta)
           if v' < v^* then \{ (v^*, m^*) := (v', m) ; \beta := \min(\beta, v^*) \}
           if v^* < \alpha then return (v^*, m^*) }
     return (v*, m*) }
```


Alpha-Beta Tree Search: Complexity

The order in which nodes are expanded matters!

- In the worst case, $O(b^d)$ terminal nodes will be visited, even with pruning.
- In the best case, only $O(b^{\frac{d}{2}}) = O(\sqrt{b}^d)$ terminal nodes will be visited:



(Witnessing a winning strategy requires at least $b \cdot 1 \cdot ... \cdot b \cdot 1 = b^{\frac{d}{2}}$ leaves.)

- However, finding a perfect move ordering amounts to solving the game.
- In practice, earlier evaluations (history) or expert knowledge can be used.

Heuristics

Heuristic Evaluation

Recall: There are at least two possible ways of reducing b^d :

- Reducing b: Do we really have to try out all possible moves?
 → alpha-beta pruning
- Reducing d: Do we really have to play the game until the end?
 heuristic evaluation of states

Terminology

A **heuristic** aims at reducing the search space of a given problem, typically trading this off for at least one of optimality, completeness, or computation.

Main Idea: Treat non-terminal states as if they were terminal, estimate value.

- Replace function **IS-TERMINAL**: $S \to \{\top, \bot\}$ by **IS-CUTOFF**: $S \times \mathbb{N} \to \{\top, \bot\}$, **IS-CUTOFF**(s, d) . . . "cut off search below state s in search depth d,"
- and function **UTILITY**: $S \to \mathbb{R}$ by **EVAL**: $S \to \mathbb{R}$, **EVAL**(s) ... "estimate the prospective utility of state s (for player max)."

Restricting Depth: Heuristic Minimax Value

Heuristic Function **EVAL**: Technical Requirements

For all $s \in S$:

- 1. If is-terminal(s), then eval(s) = utility(s), otherwise
- 2. $\min_{s \in S_T} \text{UTILITY}(s) \leq \text{EVAL}(s) \leq \max_{s \in S_T} \text{UTILITY}(s)$ for $S_T := \{s \in S \mid \text{IS-TERMINAL}(s)\}.$
- In practice, the heuristic function EVAL should be computable efficiently.
- EVAL(s) should strongly correlate with max's "chances of winning" in s.

Definition

The **heuristic minimax value** of a state $s \in S$ (w.r.t. d, **is-cutoff**, and **eval**) is

$$\mathbf{hmm}(s,d) := \begin{cases} \mathbf{EVAL}(s) & \text{if } \mathbf{Is\text{-}CUTOFF}(s,d), \\ \max_{m \in \mathbf{MOVES}(s)} \mathbf{hmm}(\mathbf{RESULT}(s,m),d+1) & \text{if } \mathbf{TURN}(s) = \max, \\ \min_{m \in \mathbf{MOVES}(s)} \mathbf{hmm}(\mathbf{RESULT}(s,m),d+1) & \text{if } \mathbf{TURN}(s) = \min. \end{cases}$$

Heuristic Evaluation Functions

- Typically require experience with or expert knowledge about the game.
- Often combine various features f_i of the state into one numerical value:

$$\mathbf{EVAL}(s) = w_1 \cdot f_1(s) + \ldots + w_m \cdot f_m(s)$$

- Possible features can be:
 - Mobility: Measure the number of things a player can do (e.g. number of moves, number of reachable states within the next n moves, ...).
 - Goal proximity: How "close" (similar) is the current state to a final state?
 - Material: Count number (or "strength") of pieces (if applicable and variable).
- Further features may exploit game-specific properties,
 e.g. persistence of markings in Tic-Tac-Toe or Connect-Four.

Heuristic Evaluation Functions: Examples

Example: Chess

- Add up "material values" of the player's remaining pieces: pawn $\hat{=}$ 1, knight/bishop $\hat{=}$ 3, rook $\hat{=}$ 5, queen $\hat{=}$ 9.
- Assess board control (centre is better than edges or corners).

Example: Tic-Tac-Toe, Goal proximity

- There are 9 possible first moves for X: 1 centre, 4 sides, 4 corners.
- We can e.g. estimate in how many winning final positions they occur:

centre:
$$\frac{|X|}{|X|}$$
 $\frac{|X||X|}{|X|}$ $\frac{|X||X|}{|X|}$ $\frac{|X||X|}{|X|}$ corner: $\frac{|X|}{|X|}$ $\frac{|X||X|}{|X|}$

side: $\frac{x}{x}$ $\frac{x \times x}{x}$

Heuristic Alpha-Beta Tree Search: Algorithm

Algorithm:

In the pseudocode on Slide 17, replace the lines mentioning **IS-TERMINAL** by:

if IS-CUTOFF(S, d) then return (EVAL(S), null)

and keep track of the search depth *d* as for the heuristic minimax value.

When to cut off search?

- At a fixed depth d_{max} .
- After a fixed time, using iterative deepening and keeping track of best moves (to also improve move ordering in subsequent iterations).

When not to cut off search?

- Quiescence: Apply heuristic evaluation only to quiescent positions, those not facing pending moves that would significantly affect the evaluation.
- Horizon effect: An ultimately unavoidable opponent move is pushed beyond the horizon by delay tactics and thus seemingly avoided.

Improvements of Alpha-Beta Tree Search

Move Ordering:

- Static: Use human (expert) knowledge about the game.
- Dynamic: Use iterative deepening and the history heuristic (moves that were useful in previous search iterations will probably be useful in later ones).

• Transposition Tables:

- The same game state can be reached by different histories.
- Recognising game states that have been visited before avoids re-searching.

Variable Depth:

- Strong moves are worth searching more deeply, weak moves (e.g. those expanded later with good move ordering) less so.

Endgame Tables:

- Endgames can be completely solved (doing bottom-up search with reverse moves) whenever the number of positions can be handled in practice.
- The resulting strategies can be put into lookup tables and consulted in search.

Conclusion

Minimax Tree Search can be extended to more than two (say *n*) players:

- The **utility** function returns an *n*-tuple (v_1, \ldots, v_n) of utilities.
- Every player i only maximises v_i when it is their turn to move.

Summary

- Game trees can be succinctly represented by state-based game models.
- Minimax Tree Search can be used to solve sequential (two-player zero-sum) games with perfect information.
- Alpha-Beta Pruning allows to reduce the search space without sacrificing solutions.
- **Heuristic Evaluation** of states can be used to reduce search depth.
- Further heuristics may reduce the search space (typically with sacrifices).

