
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch

TU Dresden, 4 May 2015

Overview

1. Introduction | Relational data model

2. First-order queries

3. Complexity of query answering

4. Complexity of FO query answering

5. Query optimization

6. Conjunctive queries

7. Limits of first-order query expressiveness

8. Introduction to Datalog

9. Implementation techniques for Datalog

10. Path queries

11. Constraints (1)

12. Constraints (2)

13. “Buffer time”

14. Outlook: database theory in practice
Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 2 of 28

How to Measure Query Answering Complexity

Query answering as decision problem
{ consider Boolean queries

Various notions of complexity:

• Combined complexity (complexity w.r.t. size of query and
database instance)

• Data complexity (worst case complexity for any fixed query)

• Query complexity (worst case complexity for any fixed
database instance)

Various common complexity classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 3 of 28

An Algorithm for Evaluating FO Queries

function Eval(ϕ,I)

01 switch (ϕ) {
02 case p(c1, . . . , cn) : return 〈c1, . . . , cn〉 ∈ pI

03 case ¬ψ : return ¬Eval(ψ,I)

04 case ψ1 ∧ ψ2 : return Eval(ψ1,I) ∧ Eval(ψ2,I)

05 case ∃x.ψ :

06 for c ∈ ∆I {
07 if Eval(ψ[x 7→ c],I) then return true

08 }
09 return false

10 }

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 4 of 28

FO Algorithm Worst-Case Runtime

Let m be the size of ϕ, and let n = |I| (total table sizes)

• How many recursive calls of Eval are there?
{ one per subexpression: at most m

• Maximum depth of recursion?
{ bounded by total number of calls: at most m

• Maximum number of iterations of for loop?
{ |∆I| ≤ n per recursion level
{ at most nm iterations

• Checking 〈c1, . . . , cn〉 ∈ pI can be done in linear time w.r.t. n

Runtime in m · nm · n = m · nm+1

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 5 of 28

Time Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Runtime in m · nm+1

Time complexity of FO query evaluation

• Combined complexity: in ExpTime

• Data complexity (m is constant): in P

• Query complexity (n is constant): in ExpTime

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 6 of 28

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of ϕ, and let n = |I| (total table sizes)

• For each (recursive) call, store pointer to current
subexpression of ϕ: log m

• For each variable in ϕ (at most m), store current constant
assignment (as a pointer): m · log n

• Checking 〈c1, . . . , cn〉 ∈ pI can be done in logarithmic space
w.r.t. n

Memory in m log m + m log n + log n = m log m + (m + 1) log n

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 7 of 28

Space Complexity of FO Algorithm

Let m be the size of ϕ, and let n = |I| (total table sizes)

Memory in m log m + (m + 1) log n

Space complexity of FO query evaluation

• Combined complexity: in PSpace

• Data complexity (m is constant): in L

• Query complexity (n is constant): in PSpace

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 8 of 28

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace.
Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO
query evaluation
{ QBF satisfiability

Let Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] be a QBF (with Qi ∈ {∀,∃})
• Database instance I with ∆I = {0, 1}
• One table with one row: true(1)

• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ[X1 7→ true(x1), . . . , Xn 7→ true(xn)]

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 9 of 28

PSpace-hardness for DI Queries
The previous reduction from QBF may lead to a query that is not
domain independent

Example: QBF ∃p.¬p leads to FO query ∃x.¬true(x)

Better approach:

• Consider QBF Q1X1. Q2X2. · · · QnXn.ϕ[X1, . . . , Xn] with ϕ in
negation normal form: negations only occur directly before
variables Xi (still PSpace-complete: exercise)

• Database instance I with ∆I = {0, 1}
• Two tables with one row each: true(1) and false(0)
• Transform input QBF into Boolean FO query

Q1x1. Q2x2. · · · Qnxn.ϕ′

where ϕ′ is obtained by replacing each negated variable ¬Xi

with false(xi) and each non-negated variable Xi with true(xi).
Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 10 of 28

Combined Complexity of FO Query Answering

Theorem
The evaluation of FO queries is PSpace-complete with respect to
combined complexity.

We have actually shown something stronger:

Theorem
The evaluation of FO queries is PSpace-complete with respect to
query complexity.

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 11 of 28

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L

{ can we do any better?

What could be better than L?

? ⊆ L ⊆ NL ⊆ P ⊆ . . .

{ we need to define circuit complexities first

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 12 of 28

Boolean Circuits

Definition
A Boolean circuit is a finite, directed, acyclic graph where

• each node that has no predecessors is an input node

• each node that is not an input node is one of the following
types of logical gate: AND, OR, NOT

• one or more nodes are designated output nodes

{ we will only consider Boolean circuits with exactly one output

{ propositional logic formulae are Boolean circuits with one output
and gates of fanout ≤ 1

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 13 of 28

Example

A Boolean circuit over an input string x1x2 . . . xn of length n

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

Corresponds to formula (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ . . . ∨ (xn−1 ∧ xn)
{ accepts all strings with at least two 1s
Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 14 of 28

Circuits as a Model for Parallel Computation

Previous example:

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

{ n2 processors working in parallel
{ computation finishes in 2 steps

• size: number of gates = total number of computing steps

• depth: longest path of gates = time for parallel computation

{ refinement of polynomial time taking parallelizability into account

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 15 of 28

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
{ each circuit only has a finite number of different inputs
{ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition
A uniform family of Boolean circuits is a set of circuits Cn (n ≥ 0)
that can be computed from n (usually in logarithmic space or time;
we don’t discuss the details here).

A language L ⊆ {0, 1}∗ is decided by a uniform family (Cn)n≥0 of
Boolean circuits if for each word w of length |w|:

w ∈ L if and only if C|w|(w) = 1

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 16 of 28

Measuring Complexity with Boolean Circuits
How to measure the computing power of Boolean circuits?

Relevant metrics:

• size of the circuit: overall number of gates
(as function of input size)

• depth of the circuit: longest path of gates
(as function of input size)

• fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition
(Cn)n≥0 is a family of small-depth circuits if

• the size of Cn is polynomial in n,

• the depth of Cn is poly-logarithmic in n, that is, O(logk n).

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 17 of 28

The Complexity Classes NC and AC

Two important types of small-depth circuits

Definition
NCk is the class of problems that can be solved by uniform families
of circuits (Cn)n≥0 of fan-in ≤ 2, size polynomial in n, and depth in
O(logk n).

The class NC is defined as NC =
⋃

k≥0 NCk.
(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition
ACk and AC are defined like NCk and NC, respectively, but for
circuits with arbitrary fan-in.
(A is for “Alternating”: AND-OR gates alternate in such circuits)

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 18 of 28

Example

x1 x2 x3 x4 x5 . . . xn

. . .

. . .

(n2 gates)

. . .

family of polynomial size,
constant depth,
arbitrary fan-in circuits
{ in AC0

We can eliminate arbitrary fan-ins by using more layers of gates:

x1 x2 x3 x4 x5 . . . xn

. . .
(n2 gates)

. . .

. . .

. . .

. . .

. . .

(n2/2 gates)

(n2/4 gates)

. . .

family of polynomial size,
logarithmic depth,
bounded fan-in circuits
{ in NC1

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 19 of 28

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . . ⊆ ACk ⊆ NCk+1 ⊆ . . .

Only few inclusions are known to be proper: NC0 ⊂ AC0 ⊂ NC1

Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

Intuition:

• Problems in NC are parallelisable

• Problems in P \NC are inherently sequential

However: it is not known if NC , P

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 20 of 28

Back to Databases . . .

Theorem
The evaluation of FO queries is complete for (logtime uniform) AC0

with respect to data complexity.

Proof:

• Membership: For a fixed Boolean FO query, provide a uniform
construction for a small-depth circuit based on the size of a
database

• Hardness: Show that circuits can be transformed into Boolean
FO queries in logarithmic time (not on a standard TM . . . not in
this lecture)

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 21 of 28

From Query to Circuit
Assumption:
• query and database schema is fixed
• database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:
• one input node for each possible database tuple (over given schema

and active domain)
{ true or false depending on whether tuple is present or not

• Recursively, for each subformula, introduce a gate for each possible
tuple (instantiation) of this formula
{ true or false depending on whether the subformula holds for this

tuple or not
• Logical operators correspond to gate types: basic operators obvious,
∀ as generalised conjunction, ∃ as generalised disjunction

• subformula with n free variables{ |adom|n gates
{ especially: |adom|0 = 1 output gate for Boolean query

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 22 of 28

Example

We consider the formula

∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

Over the database instance:

R:

a a

a b

S:

b b

b c

Active domain: {a, b, c}

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 23 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 24 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,
x)

[a
]

¬R
(a

,
x)

[a
]

¬R
(a

,
x)

[b
]

¬R
(a

,
x)

[c
]

R
(a

,
x)

[b
]

R
(a

,
x)

[c
]

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 25 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,
x)

[a
]

¬R
(a

,
x)

[a
]

¬R
(a

,
x)

[b
]

¬R
(a

,
x)

[c
]

R
(a

,
x)

[b
]

R
(a

,
x)

[c
]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[b]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[a]

∃z.
(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 26 of 28

Example: ∃z.(∃x.∃y.R(x, y) ∧ S(y, z)) ∧ ¬R(a, z)

. . .R(a, a) R(a, b) R(a, c) S(a, a) . . . S(b, a) S(b, b) S(b, c) . . .

(R(x, y) ∧
. . .

S(y, z))
[a, b, a]

(R(x, y) ∧
S(y, z))

[a, b, b]

(R(x, y) ∧
S(y, z))

[a, b, c] . . .

(R(x, y) ∧
S(y, z))

[a, a, a]

∃y.(R(x, y) ∧
S(y, z))

[a, a]

.

. . .

. . .

∃y.(R(x, y) ∧
S(y, z))
[a, b]

∃y.(R(x, y) ∧
S(y, z))

[a, c]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[a]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[b]

. . .

∃x.∃y.(R(x, y) ∧
S(y, z))

[c]

. . .

R
(a

,
x)

[a
]

¬R
(a

,
x)

[a
]

¬R
(a

,
x)

[b
]

¬R
(a

,
x)

[c
]

R
(a

,
x)

[b
]

R
(a

,
x)

[c
]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[c]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[b]

(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)
[a]

∃z.
(∃x.∃y.(R(x, y) ∧
S(y, z))

) ∧ ¬R(a, z)

. . .1 1 0 0 . . . 0 1 1 . . .

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 27 of 28

Summary and Outlook

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

• AC0-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

• Which other computing problems are interesting? (next lecture)

• Are there query languages with lower complexities?

• How can we study the expressiveness of query languages?

Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 28 of 28

