
DATABASE THEORY

Lecture 14: Database Theory in Practice

Markus Krötzsch

TU Dresden, 14 July 2016

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 14 July 2016 Database Theory slide 2 of 28

Database Theory in Practice?

We have seen many query languages:

• CQ, FO, (2)RPQ, C(2)RPQ, Datalog, linear Datalog,
semipositive Datalog, . . .

. . . and many optimisation techniques:

• optimisation of tree-like queries

• CQ containment and equivalence

• Datalog implementation techniques

Is any of this relevant in practice?

Markus Krötzsch, 14 July 2016 Database Theory slide 3 of 28

Review: FO, relational algebra, and SQL

The following are essentially equivalent:

• First-order queries

• Relational algebra queries

• “Basic” SQL queries

where different applications may use slightly different variants
(named vs. unnamed perspective; tuple-relational calculus; domain
independent vs. active domain semantics; . . . )

We get CQs when restricting to SELECT-PROJECT-JOIN queries.

{ All RDBMSs implement FO queries, and CQs as special case

Markus Krötzsch, 14 July 2016 Database Theory slide 4 of 28



Recursive Queries in SQL

The SQL’99 standard supports recursive queries through the WITH

RECURSIVE construct.

• IDB pred’s are called common table expressions (CTE) in SQL

• A CTE is defined by a single SQL query, which can use the
CTE recursively

• The standard defines a fixed point semantics, similar to
Datalog

• Widely supported today (IBM DB2, PostgreSQL, Oracle 11g
R2, MS SQL Server, . . . ), but implementations vary and don’t
conform to a common standard so far

Markus Krötzsch, 14 July 2016 Database Theory slide 5 of 28

Recursive Queries in SQL: Example
Find all ancestors of Alice:

WITH RECURSIVE ancestor(young, old) AS (

SELECT parent.young, parent.old FROM parent

UNION ALL

SELECT ancestor.young, parent.old

FROM ancestor, parent

WHERE ancestor.old = parent.young

)

SELECT * FROM ancestor WHERE ancestor.young = ’alice’;

Notes:
• UNION ALL keeps duplicates, which leads to a multiset (bag)

semantics that may cause termination problems.
• Many RDBMSs will fail to push the selection ancestor.young

= ’alice’ into the recursion; modifying the CTE definition to
start from ’alice’ would help them.

Markus Krötzsch, 14 July 2016 Database Theory slide 6 of 28

Expressive Power of Recursive SQL
The expressive power of recursive SQL is not easy to determine:
• A CTE uses only a single IDB predicate, but it can use unions
• UNION ALL enforces a multiset semantics
• SQL subsumes FO queries (including negation!)
• SQL has other features, e.g., adding numbers
• Specific RDBMSs have own extensions or restrictions

Some relevant questions:
• Can I use negation to filter duplicates during recursion?

SQL allows this, but implementations like MS SQL Server return
wrong results when trying this (unsuitable implementation approach
that operates “depth-first” tuple-by-tuple using separate “stacks”).

• Can I use the CTE more than once in a recursive term?
SQL allows this, but not all RDBMSs support it. Many RDBMSs that
allow it do not seem to implement it correctly (e.g., PostgreSQL 8.4,
according to online documentation).

Markus Krötzsch, 14 July 2016 Database Theory slide 7 of 28

Expressive Power of Recursive SQL (2)

SQL is too powerful for a declarative recursive query language:

• Combination of negation and recursion is hard to define and
implement.

• Functions such as addition can extend the active domain.

{ non-declarative approach to recursion (Turing complete)
{ all implementations allow non-terminating queries

With care, one can still formulate sane queries.

Expressive power in terms of Datalog:

• Minimal: linear Datalog with bounded recursion depth (can
still be useful, e.g., for navigating hierarchies)

• Maximal: arbitrary semi-positive Datalog with successor
order, and beyond

Markus Krötzsch, 14 July 2016 Database Theory slide 8 of 28



Recursion in SQL: Conclusions
Mixed picture of recursion in SQL:

• SQL’99 supports arbitrary Datalog

• Practical implementations are ad hoc and rather limited

• No simple & terminating queries with unbounded recursion

• Some implementations seem to support at least linear
Datalog in a clean way
(e.g., PostgreSQL supports UNION and duplicate elimination in
recursive CTEs, using a special case of semi-naive evaluation)

• Online documentation mostly fails to clarify restrictions

Recursive CTEs are not the only option:

• Oracle has a proprietary SQL extension CONNECT BY

• similar to Transitive Closure operator in FO queries

• designed for linear recursion

Oracle speaks of “subquery factoring” when using CTEs.
Markus Krötzsch, 14 July 2016 Database Theory slide 9 of 28

Practical Recursion Beyond SQL

SQL support for recursion is a bit shaky
{ how about other types of DBMSs?

Recursion plays a role in a number of distinct areas, including:

• Datalog implementations

• XQuery and XPath query languages for XML

• SPARQL query language for RDF

• Graph query languages

Markus Krötzsch, 14 July 2016 Database Theory slide 10 of 28

Review: Datalog Implementation in Practice
Dedicated Datalog engines as of 2016 (probably incomplete):
• RDFox Fast in-memory RDF database with runtime materialisation

and updates (academic)
• VLog Fast in-memory Datalog materialisation with bindings to

several databases, including RDF and RDBMS (academic)
• LogicBlox Big data analytics platform that uses Datalog rules (commercial)
• DLV Answer set programming engine with good performance on

Datalog programs (commercial)
• Datomic Distributed, versioned database using Datalog as main

query language (commercial)
• SociaLite and EmptyHeaded Datalog-based languages and engines

for social network analysis (academic)
• DeepDive Data analysis platform with support for Datalog-based

language “DDlog” (academic)
• Many RDF databases support rule-based materialisation, sometimes

with restrictions or only as offline preprocessing; e.g., Stardog
(commercial), OWLIM (commercial), Jena (free)

{ Extremely diverse tools for very different requirements
Markus Krötzsch, 14 July 2016 Database Theory slide 11 of 28

Querying RDF Graphs with SPARQL
SPARQL Protocol and RDF Query Language
• Query language for RDF graphs (roughly labelled, directed

graphs)
• W3C standard, currently in version 1.1 (2013)
• Widely used for accessing RDF databases

Structure of a simple SPARQL query:

SELECT <variable list> WHERE { <pattern> }

• <pattern> is a basic graph pattern: a list of “triples” of the
form “subject predicate object .” (denoting an edge
from subject to object labelled by predicate)

• Patterns may contain variables (marked by prefix ?) that can
be selected

• Many other features (more complex conditions in queries, limit
& offset, grouping & aggregation, . . . )

Markus Krötzsch, 14 July 2016 Database Theory slide 12 of 28



SPARQL Query Example

Find people whose parents were born in the same city in Saxony,
and return them together with that city:

PREFIX ex: <http://example.org/>

SELECT ?person ?city

WHERE {

?person ex:hasMother ?mother .

?person ex:hasFather ?father .

?mother ex:bornIn ?city .

?father ex:bornIn ?city .

?city ex:locatedIn ex:Saxony .

}

Essentially a conjunctive query with ternary EDB predicates written
in a simple text-based syntax

Markus Krötzsch, 14 July 2016 Database Theory slide 13 of 28

SPARQL and Recursion
Since version 1.1, SPARQL supports C2RPQs:
Property Path Expressions

Regular expression syntax:

• Single letter: name (URI) of a property (predicate) in RDF

• Converse `− of letter ` is written as ˆ`

• Sequence (◦) is /, alternative (+) is |, zero-or-more is *

• Other features: optional ?, one-or-more +, atomic negation !

Example:

PREFIX ex: <http://example.org/>

SELECT ?person ?ancestor

WHERE {

?person ( (ex:hasMother|ex:hasFather)+ ) ?ancestor .

}

Markus Krötzsch, 14 July 2016 Database Theory slide 14 of 28

Recursion in SPARQL: Conclusions

Widely supported feature of most modern RDF databases

• Set-based semantics that agrees with C2RPQs

• Typically implemented in a declarative way (no operational
extensions)

• Guaranteed to terminate, given sufficient resources

• Performance depends on implementation and data (not all
implementations have a good optimiser for property paths)

• Example implementations: BlazeGraph, OpenLink Virtuoso,
Stardog, . . .

Markus Krötzsch, 14 July 2016 Database Theory slide 15 of 28

Recursion in other Graph Databases
Graph databases support recursive queries, but there is no
standard query language
{ sometimes not fully clear what is supported/moving target

Example: Cypher query language in Neo4J

MATCH (p)-[r:HasMother|HasFather*]->(a)

WHERE p.name=’Alice’

RETURN p,r,a

• Support for retrieving matched paths (r in example)
• Additional graph search features (shortest path, limited

recursion, etc.)
• No full support for RPQs, since stars cannot be applied to

complex expressions
• Purportedly query matching is based on isomorphism rather

than homomorphism (non-standard behaviour)
Markus Krötzsch, 14 July 2016 Database Theory slide 16 of 28



Recursion in XML Document Processing

XML a W3C standard for a document markup language

• XML is used for markup and data representation

• XML documents can be interpreted under a tree-shaped
Document Object Model (DOM)

• DOM tree is an ordered tree where each node has a type, and
optionally also attribute values

The XML query language XPath defines ways to query XML DOMs

• W3C standard now in version 3.0 (2014); many practical
implementations based on XPath 1.0

• Key concept: expressions to select (query) nodes and
attributes in a DOM tree

• Recursion is important for navigating trees

Markus Krötzsch, 14 July 2016 Database Theory slide 17 of 28

XPath Expression Examples

XPath expressions navigate the DOM tree by using natural binary
relations among nodes, called axes, such as “child” and
“descendant.”

Example XPath expressions:

• /A/B nodes of type B that are children of a node of type A that
is the root of the DOM tree

• A//C arbitrary descendants of the a node of type A that is the
start node (context node) for the query

• //C[./D/E]/F nodes of type F that are the child of a node of
type C anywhere in the DOM, where the C-node has a D child
that has an E child.

There are many further features related to attribute selection and
use of other axes

Markus Krötzsch, 14 July 2016 Database Theory slide 18 of 28

XPath: Expressive Power

XPath is related to 2RPQs

• There are some differences between DOM trees and words

• Many XPath location steps could be written in 2RPQ

Predicates in square brackets are used to test additional path-like
conditions for a node

• Example: A[.//B] only matches A-type nodes that have a
descendant of type B

• Corresponds to unary sub-2RPQs of the form ∃y.E(x, y) that
test if a node x has an E-path to some other node

{ not expressible in (C)2RPQs without further extensions

Markus Krötzsch, 14 July 2016 Database Theory slide 19 of 28

Recursion in XPath: Conclusions

XPath: XML navigation base on path queries

• Declarative, set-based semantics

• Standardised in several versions

• Many implementations (program libraries, some DBMS)

• Large number of features – hard to analyse theoretically

Related approaches:

• XQuery: extension of XPath with computational features

• CSS Selectors: simple query language for navigating HTML
documents

Markus Krötzsch, 14 July 2016 Database Theory slide 20 of 28



Summary and Outlook

Markus Krötzsch, 14 July 2016 Database Theory slide 21 of 28

Summary

We have covered three main topics:

• first-order queries

• Datalog

• path query languages

looking at the following main aspects:

• expressive power

• complexity of query answering

• complexity/feasibility of perfect query optimisation

• some algorithmic approaches

Equal focus on results and methods
{ understanding why something holds

Markus Krötzsch, 14 July 2016 Database Theory slide 22 of 28

The Ultimate Big Picture

Arbitrary Query Mappings

First-Order
Queries

Polynomial Time Query Mappings

AC0/NP/NP/trivial

undecidable/-/-/-

Datalog P/Exp/undecidable/P

= semipositive Datalog with a successor ordering

C2RPQs NL/NP/ExpSpace/trivial

AC0/PSpace/
undecidable/
undecidable

Tree CQs

Conjunctive Queries

k-Bounded Hypertree Width

2RPQs

Legend: Data compl./Comb. & Query compl./Equivalence & containment/Emptiness

NL/NL/PSpace/trivial

AC0/LOGCFL/LOGCFL/trivial

Linear Datalog NL/PSpace/undecidable/NL

P/Exp/
undecidable/
undecidable

1-atom
CQs

Markus Krötzsch, 14 July 2016 Database Theory slide 23 of 28

The Big Picture: Notes for Offline Reading

• Given complexities usually are upper and lower bounds
(“complete”), though AC0 is just an upper bound

• “Linear Datalog” refers to the strict definition from the previous
lecture. Some authors consider a final CQ “on top” of linear
Datalog programs, but this does not change anything (see below).

• The “-” for arbitrary query mappings mean that these
problems are not defined (we have no query expressions that
could be the input of an algorithm, just mappings).

• Some complexities given were not shown, including
P-completeness of Datalog emptiness (left as exercise).

• Most complexities for semipositive Datalog with a successor
ordering are easily obtained from Datalog using the fact that
the required negated EDB predicates and ordering facts can
be added to a given database in polynomial time.

Markus Krötzsch, 14 July 2016 Database Theory slide 24 of 28



The Big Picture: Notes for Offline Reading

Emptiness of semipositive Datalog with a successor ordering is not
quite so obvious . . .

Proof sketch:

• Emptiness of the intersection of two context-free grammars
G1 and G2 is undecidable.

• The word problem of context-free grammars is in P.

• A database can encode a word if it is a linear chain using
binary letter predicates. This can be checked in P.

• Semipositive Datalog with successor captures P, so there is a
Boolean query PG1,G2 in this language that decides if the
database encodes a word that is in G1 and G2.

• The emptiness problem of PG1,G2 is equivalent to the
emptiness problem for G1 ∩ G2.

Markus Krötzsch, 14 July 2016 Database Theory slide 25 of 28

The Big Picture: Notes for Offline Reading
The fact that linear Datalog extends C2RPQ is not obvious either:
how can we express conjunctions over IDBs there?

Proof sketch:1

• The C2RPQ can be viewed as a CQ over IDBs that are defined by
linear Datalog programs obtained for 2RPQs

• Without loss of generality, we assume that each of these linear
Datalog programs uses differently named IDB predicates

• We transform this CQ over IDB atoms step by step

• In each step, process two IDB atoms Q(x1, . . . , xn) and R(y1, . . . , ym)

– Replace them by a single new atom R′(x1, . . . , xn, y1, . . . , ym)
– Use linear rules that consist of all rules used for defining Q

together with modified versions of the rules for R that
“remember” a binding for Q while deriving facts about R.

• Continue until only one IDB is left in the conjunction.
1For details on a similar proof, see Theorem 3 in P. Bourhis, M. Krötzsch,

S. Rudolph: Reasonable Highly Expressive Query Languages, Proc. IJCAI 2015.
Markus Krötzsch, 14 July 2016 Database Theory slide 26 of 28

Conclusions

The relational data model remains the most widely used general
data model, but alternative data models are now also relevant:

• “noSQL” data models (graphs, trees, documents, map, . . . )

• All major RDBMS vendors have products in this space,
sometimes based on their RDBMSs, sometimes not

• Revival of specialised stores and data models

The same basic theory applies to relational and non-relational DBMSs:

• all data models can be viewed as relational

• fundamental query types re-appear in many settings (CQs,
path queries, . . . )

• non-relational DBMS are taking the lead in realising more
advanced concepts (recursive queries, clean set-based
semantics)

Markus Krötzsch, 14 July 2016 Database Theory slide 27 of 28

What’s next?
Current data management landscape is extremely dynamic and
hard to predict – interesting times!
• Many further topics not covered here (data stream processing,

distributed models of computation, analytical queries, . . . )
• Many theoretical questions remain open (further query

languages, constraints/ontologies, algorithms, . . . )

A wider view is key to success:
• Practitioners need to know their tools and be ready to

combine them into custom solutions
• Theoreticians need to combine methods from distinct areas

and re-integrate practical developments

Basic principles are more important than short-lived technology
trends, but the best theoretical insights also feed back into practice.

Markus Krötzsch, 14 July 2016 Database Theory slide 28 of 28


