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Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
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Database Theory in Practice?

We have seen many query languages:

• CQ, FO, (2)RPQ, C(2)RPQ, Datalog, linear Datalog,
semipositive Datalog, . . .

. . . and many optimisation techniques:

• optimisation of tree-like queries

• CQ containment and equivalence

• Datalog implementation techniques

Is any of this relevant in practice?
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Review: FO, relational algebra, and SQL

The following are essentially equivalent:

• First-order queries

• Relational algebra queries

• “Basic” SQL queries

where different applications may use slightly different variants
(named vs. unnamed perspective; tuple-relational calculus; domain
independent vs. active domain semantics; . . . )

We get CQs when restricting to SELECT-PROJECT-JOIN queries.

{ All RDBMSs implement FO queries, and CQs as special case
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Recursive Queries in SQL

The SQL’99 standard supports recursive queries through the WITH

RECURSIVE construct.

• IDB pred’s are called common table expressions (CTE) in SQL

• A CTE is defined by a single SQL query, which can use the
CTE recursively

• The standard defines a fixed point semantics, similar to
Datalog

• Widely supported today (IBM DB2, PostgreSQL, Oracle 11g
R2, MS SQL Server, . . . ), but implementations vary and don’t
conform to a common standard so far
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Recursive Queries in SQL: Example
Find all ancestors of Alice:

WITH RECURSIVE ancestor(young, old) AS (

SELECT parent.young, parent.old FROM parent

UNION ALL

SELECT ancestor.young, parent.old

FROM ancestor, parent

WHERE ancestor.old = parent.young

)

SELECT * FROM ancestor WHERE ancestor.young = ’alice’;

Notes:
• UNION ALL keeps duplicates, which leads to a multiset (bag)

semantics that may cause termination problems.
• Many RDBMSs will fail to push the selection ancestor.young

= ’alice’ into the recursion; modifying the CTE definition to
start from ’alice’ would help them.
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Expressive Power of Recursive SQL
The expressive power of recursive SQL is not easy to determine:
• A CTE uses only a single IDB predicate, but it can use unions
• UNION ALL enforces a multiset semantics
• SQL subsumes FO queries (including negation!)
• SQL has other features, e.g., adding numbers
• Specific RDBMSs have own extensions or restrictions

Some relevant questions:
• Can I use negation to filter duplicates during recursion?

SQL allows this, but implementations like MS SQL Server return
wrong results when trying this (unsuitable implementation approach
that operates “depth-first” tuple-by-tuple using separate “stacks”).

• Can I use the CTE more than once in a recursive term?
SQL allows this, but not all RDBMSs support it. Many RDBMSs that
allow it do not seem to implement it correctly (e.g., PostgreSQL 8.4,
according to online documentation).
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Expressive Power of Recursive SQL (2)

SQL is too powerful for a declarative recursive query language:

• Combination of negation and recursion is hard to define and
implement.

• Functions such as addition can extend the active domain.

{ non-declarative approach to recursion (Turing complete)
{ all implementations allow non-terminating queries

With care, one can still formulate sane queries.

Expressive power in terms of Datalog:

• Minimal: linear Datalog with bounded recursion depth (can
still be useful, e.g., for navigating hierarchies)

• Maximal: arbitrary semi-positive Datalog with successor
order, and beyond
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Recursion in SQL: Conclusions
Mixed picture of recursion in SQL:

• SQL’99 supports arbitrary Datalog

• Practical implementations are ad hoc and rather limited

• No simple & terminating queries with unbounded recursion

• Some implementations seem to support at least linear
Datalog in a clean way
(e.g., PostgreSQL supports UNION and duplicate elimination in
recursive CTEs, using a special case of semi-naive evaluation)

• Online documentation mostly fails to clarify restrictions

Recursive CTEs are not the only option:

• Oracle has a proprietary SQL extension CONNECT BY

• similar to Transitive Closure operator in FO queries

• designed for linear recursion

Oracle speaks of “subquery factoring” when using CTEs.
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Practical Recursion Beyond SQL

SQL support for recursion is a bit shaky
{ how about other types of DBMSs?

Recursion plays a role in a number of distinct areas, including:

• Datalog implementations

• XQuery and XPath query languages for XML

• SPARQL query language for RDF

• Graph query languages
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Review: Datalog Implementation in Practice
Dedicated Datalog engines as of 2016 (probably incomplete):
• RDFox Fast in-memory RDF database with runtime materialisation

and updates (academic)
• VLog Fast in-memory Datalog materialisation with bindings to

several databases, including RDF and RDBMS (academic)
• LogicBlox Big data analytics platform that uses Datalog rules (commercial)
• DLV Answer set programming engine with good performance on

Datalog programs (commercial)
• Datomic Distributed, versioned database using Datalog as main

query language (commercial)
• SociaLite and EmptyHeaded Datalog-based languages and engines

for social network analysis (academic)
• DeepDive Data analysis platform with support for Datalog-based

language “DDlog” (academic)
• Many RDF databases support rule-based materialisation, sometimes

with restrictions or only as offline preprocessing; e.g., Stardog
(commercial), OWLIM (commercial), Jena (free)

{ Extremely diverse tools for very different requirements
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Querying RDF Graphs with SPARQL
SPARQL Protocol and RDF Query Language
• Query language for RDF graphs (roughly labelled, directed

graphs)
• W3C standard, currently in version 1.1 (2013)
• Widely used for accessing RDF databases

Structure of a simple SPARQL query:

SELECT <variable list> WHERE { <pattern> }

• <pattern> is a basic graph pattern: a list of “triples” of the
form “subject predicate object .” (denoting an edge
from subject to object labelled by predicate)

• Patterns may contain variables (marked by prefix ?) that can
be selected

• Many other features (more complex conditions in queries, limit
& offset, grouping & aggregation, . . . )
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SPARQL Query Example

Find people whose parents were born in the same city in Saxony,
and return them together with that city:

PREFIX ex: <http://example.org/>

SELECT ?person ?city

WHERE {

?person ex:hasMother ?mother .

?person ex:hasFather ?father .

?mother ex:bornIn ?city .

?father ex:bornIn ?city .

?city ex:locatedIn ex:Saxony .

}

Essentially a conjunctive query with ternary EDB predicates written
in a simple text-based syntax
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SPARQL and Recursion
Since version 1.1, SPARQL supports C2RPQs:
Property Path Expressions

Regular expression syntax:

• Single letter: name (URI) of a property (predicate) in RDF

• Converse `− of letter ` is written as ˆ`

• Sequence (◦) is /, alternative (+) is |, zero-or-more is *

• Other features: optional ?, one-or-more +, atomic negation !

Example:

PREFIX ex: <http://example.org/>

SELECT ?person ?ancestor

WHERE {

?person ( (ex:hasMother|ex:hasFather)+ ) ?ancestor .

}
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Recursion in SPARQL: Conclusions

Widely supported feature of most modern RDF databases

• Set-based semantics that agrees with C2RPQs

• Typically implemented in a declarative way (no operational
extensions)

• Guaranteed to terminate, given sufficient resources

• Performance depends on implementation and data (not all
implementations have a good optimiser for property paths)

• Example implementations: BlazeGraph, OpenLink Virtuoso,
Stardog, . . .
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Recursion in other Graph Databases
Graph databases support recursive queries, but there is no
standard query language
{ sometimes not fully clear what is supported/moving target

Example: Cypher query language in Neo4J

MATCH (p)-[r:HasMother|HasFather*]->(a)

WHERE p.name=’Alice’

RETURN p,r,a

• Support for retrieving matched paths (r in example)
• Additional graph search features (shortest path, limited

recursion, etc.)
• No full support for RPQs, since stars cannot be applied to

complex expressions
• Purportedly query matching is based on isomorphism rather

than homomorphism (non-standard behaviour)
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Recursion in XML Document Processing

XML a W3C standard for a document markup language

• XML is used for markup and data representation

• XML documents can be interpreted under a tree-shaped
Document Object Model (DOM)

• DOM tree is an ordered tree where each node has a type, and
optionally also attribute values

The XML query language XPath defines ways to query XML DOMs

• W3C standard now in version 3.0 (2014); many practical
implementations based on XPath 1.0

• Key concept: expressions to select (query) nodes and
attributes in a DOM tree

• Recursion is important for navigating trees
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XPath Expression Examples

XPath expressions navigate the DOM tree by using natural binary
relations among nodes, called axes, such as “child” and
“descendant.”

Example XPath expressions:

• /A/B nodes of type B that are children of a node of type A that
is the root of the DOM tree

• A//C arbitrary descendants of the a node of type A that is the
start node (context node) for the query

• //C[./D/E]/F nodes of type F that are the child of a node of
type C anywhere in the DOM, where the C-node has a D child
that has an E child.

There are many further features related to attribute selection and
use of other axes
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XPath: Expressive Power

XPath is related to 2RPQs

• There are some differences between DOM trees and words

• Many XPath location steps could be written in 2RPQ

Predicates in square brackets are used to test additional path-like
conditions for a node

• Example: A[.//B] only matches A-type nodes that have a
descendant of type B

• Corresponds to unary sub-2RPQs of the form ∃y.E(x, y) that
test if a node x has an E-path to some other node

{ not expressible in (C)2RPQs without further extensions
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Recursion in XPath: Conclusions

XPath: XML navigation base on path queries

• Declarative, set-based semantics

• Standardised in several versions

• Many implementations (program libraries, some DBMS)

• Large number of features – hard to analyse theoretically

Related approaches:

• XQuery: extension of XPath with computational features

• CSS Selectors: simple query language for navigating HTML
documents
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Summary and Outlook
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Summary

We have covered three main topics:

• first-order queries

• Datalog

• path query languages

looking at the following main aspects:

• expressive power

• complexity of query answering

• complexity/feasibility of perfect query optimisation

• some algorithmic approaches

Equal focus on results and methods
{ understanding why something holds
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The Ultimate Big Picture

Arbitrary Query Mappings

First-Order
Queries

Polynomial Time Query Mappings

AC0/NP/NP/trivial

undecidable/-/-/-

Datalog P/Exp/undecidable/P

= semipositive Datalog with a successor ordering

C2RPQs NL/NP/ExpSpace/trivial

AC0/PSpace/
undecidable/
undecidable

Tree CQs

Conjunctive Queries

k-Bounded Hypertree Width

2RPQs

Legend: Data compl./Comb. & Query compl./Equivalence & containment/Emptiness

NL/NL/PSpace/trivial

AC0/LOGCFL/LOGCFL/trivial

Linear Datalog NL/PSpace/undecidable/NL

P/Exp/
undecidable/
undecidable

1-atom
CQs
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The Big Picture: Notes for Offline Reading

• Given complexities usually are upper and lower bounds
(“complete”), though AC0 is just an upper bound

• “Linear Datalog” refers to the strict definition from the previous
lecture. Some authors consider a final CQ “on top” of linear
Datalog programs, but this does not change anything (see below).

• The “-” for arbitrary query mappings mean that these
problems are not defined (we have no query expressions that
could be the input of an algorithm, just mappings).

• Some complexities given were not shown, including
P-completeness of Datalog emptiness (left as exercise).

• Most complexities for semipositive Datalog with a successor
ordering are easily obtained from Datalog using the fact that
the required negated EDB predicates and ordering facts can
be added to a given database in polynomial time.
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The Big Picture: Notes for Offline Reading

Emptiness of semipositive Datalog with a successor ordering is not
quite so obvious . . .

Proof sketch:

• Emptiness of the intersection of two context-free grammars
G1 and G2 is undecidable.

• The word problem of context-free grammars is in P.

• A database can encode a word if it is a linear chain using
binary letter predicates. This can be checked in P.

• Semipositive Datalog with successor captures P, so there is a
Boolean query PG1,G2 in this language that decides if the
database encodes a word that is in G1 and G2.

• The emptiness problem of PG1,G2 is equivalent to the
emptiness problem for G1 ∩ G2.
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The Big Picture: Notes for Offline Reading
The fact that linear Datalog extends C2RPQ is not obvious either:
how can we express conjunctions over IDBs there?

Proof sketch:1

• The C2RPQ can be viewed as a CQ over IDBs that are defined by
linear Datalog programs obtained for 2RPQs

• Without loss of generality, we assume that each of these linear
Datalog programs uses differently named IDB predicates

• We transform this CQ over IDB atoms step by step

• In each step, process two IDB atoms Q(x1, . . . , xn) and R(y1, . . . , ym)

– Replace them by a single new atom R′(x1, . . . , xn, y1, . . . , ym)
– Use linear rules that consist of all rules used for defining Q

together with modified versions of the rules for R that
“remember” a binding for Q while deriving facts about R.

• Continue until only one IDB is left in the conjunction.
1For details on a similar proof, see Theorem 3 in P. Bourhis, M. Krötzsch,

S. Rudolph: Reasonable Highly Expressive Query Languages, Proc. IJCAI 2015.
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Conclusions

The relational data model remains the most widely used general
data model, but alternative data models are now also relevant:

• “noSQL” data models (graphs, trees, documents, map, . . . )

• All major RDBMS vendors have products in this space,
sometimes based on their RDBMSs, sometimes not

• Revival of specialised stores and data models

The same basic theory applies to relational and non-relational DBMSs:

• all data models can be viewed as relational

• fundamental query types re-appear in many settings (CQs,
path queries, . . . )

• non-relational DBMS are taking the lead in realising more
advanced concepts (recursive queries, clean set-based
semantics)
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What’s next?
Current data management landscape is extremely dynamic and
hard to predict – interesting times!
• Many further topics not covered here (data stream processing,

distributed models of computation, analytical queries, . . . )
• Many theoretical questions remain open (further query

languages, constraints/ontologies, algorithms, . . . )

A wider view is key to success:
• Practitioners need to know their tools and be ready to

combine them into custom solutions
• Theoreticians need to combine methods from distinct areas

and re-integrate practical developments

Basic principles are more important than short-lived technology
trends, but the best theoretical insights also feed back into practice.
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