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Goal

Automatically construct biomedical ontologies from text:

® Learn concept definitions from text
@ Learn terminological knowledge from text
@ Evalutation

Example (Terminological Knowledge)

» Genes are not protein complexes, and vice versa.
Gene m ProteinComplex = |
» Proteins contain amino acids

ProteinDomain m JhasPart. T = JhasPart. AminoAcid
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Looking Back

Previous Approaches
Exploit approach of learning SNOMED definitions from text.

» Generate GCls and check for their occurrence in the text.

» GCls from attribute exploration of certain basic concept description,
with DL reasoner as expert

» did not finish (> 2 weeks)

» GCls produced mostly nonsense

» Compute implications in instance-data generated from annotated text

> obtained terminological knowledge

» “good” quality, measured with precision and recall

» only restricted form of concept descriptions (at most 2 conjuncts on the
left-hand side, of pre-defined form)

Current Goal
» Learn all GCls that are valid in the text corpus
» Find a way to evaluate them
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» Allows to learn all valid ££-GCls from finite interpretations
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» Computes a base of all such GCls

v

Can also compute base of minimal cardinality
Can include role-depth bounds [Distel, 2012; Borchmann et.al., 2015]

Implementations available (prototypes)

v

v
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» How many GCls learned follow from the GRO? (certainly true positives)

» How many GCls cause inconsistency or unsatisfiable classes in the
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» Annotation uses open-world semantics

» Learning uses closed-world semantics
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Example (Entities and Events)

hasAgent hasPatient hasPatient
[Activation] [ProteinProteinlnteraction]
Activin addition strongly promotes  an interaction between these two proteins .
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Experiment
» considered only 30 most frequent concept-names (reason: performance)

» Resulting interpretation has 7399 elements, 30 concept-names, and
7 role-names

» role-depth bound 1

Results

» 1552 GCls extracted

» GRO with these GCls is still consistent
» has 321 unsatisfiable classes (out of 507)

v

49 GCls (each on its own) cause unsatisfiable classes (~ 3.2%)
Removal of 56 GCls results in no unsatisfiable classes (~ 3.6%)
319 are entailed by the GRO (~ 20.6%)

Recall not yet available

v

v

v
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Certainly correct GCls

Example

» Gene rm ProteinComplex = L

» Jencodes. T m JhasPart. T m Chromosome = |
JhasPart. T m Cell = JhasPart.CellComponent

v

v

Jencodes. T m Protein = Gene

v

JhasPart. T m JlocatedIn. T m Gene m Protein = IfromSpecies.Eukaryote
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Certainly correct GCls

Example

» Gene rm ProteinComplex = L

» Jencodes. T m JhasPart. T m Chromosome = |
JhasPart. T m Cell = JhasPart.CellComponent

v

v

Jencodes. T m Protein = Gene

v

JhasPart. T m JlocatedIn. T m Gene m Protein = IfromSpecies.Eukaryote

v

Jencodes. T m IfromSpecies.Eukaryote m JhasPart.Peptide m
JhasPart.ProteinDomain m Gene m Protein = Jencodes.MessengerRNA
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v

v

Jencodes.Eukaryote = |
CellmVirus L
Eukaryote m SignalingPathway = |

v

v
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v

v

Observation
Two reasons (at least) for inconclusive GCls
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Example
CellComponent m Nucleus = L

» Data-set did not contain any occurrence of an individual that is both
CellComponent and Nucleus

» In the GRO, CellComponent is a super-class of Nucleus

» So, the annotation is incomplete

Conclusion

» unsatisfiable classes can arise through the closed-world interpretation of
the open-world data-set.
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Unsatisfiable Classes

Question: Where do they come from?

Example
CellComponent m Nucleus = L

» Data-set did not contain any occurrence of an individual that is both
CellComponent and Nucleus

» In the GRO, CellComponent is a super-class of Nucleus

» So, the annotation is incomplete

Conclusion

» unsatisfiable classes can arise through the closed-world interpretation of
the open-world data-set.

» all disjointness axioms containing only concept-names are caused by this

Experimental Evaluation of GCls Learned from Textual Data 2015-06-08 10 / 14



Unsatisfiable Classes

Example

JlocatedIn.Cell m JlocatedIn.Nucleus = Protein
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Unsatisfiable Classes

Example

JlocatedIn.Cell m JlocatedIn.Nucleus = Protein

» Causes the class NuclearExportOfmRNA to become unsatisfiable
» GRO entails

NuclearExportOfmRNA m Protein = L

Experimental Evaluation of GCls Learned from Textual Data 2015-06-08 11 / 14



Unsatisfiable Classes
Example
JlocatedIn.Cell m JlocatedIn.Nucleus = Protein

» Causes the class NuclearExportOfmRNA to become unsatisfiable
» GRO entails

NuclearExportOfmRNA m Protein = L
NuclearExportOfmRNA = 3locatedIn.Nucleus
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Unsatisfiable Classes
Example
JlocatedIn.Cell m JlocatedIn.Nucleus = Protein

» Causes the class NuclearExportOfmRNA to become unsatisfiable
» GRO entails

NuclearExportOfmRNA m Protein = L
NuclearExportOfmRNA = 3locatedIn.Nucleus
NuclearExportOfmRNA = ProteinTargeting = JlocatedIn.Cell
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JlocatedIn.Cell m JlocatedIn.Nucleus = Protein

v

Causes the class NuclearExportOfmRNA to become unsatisfiable
GRO entails

v

NuclearExportOfmRNA m Protein = L
NuclearExportOfmRNA = 3locatedIn.Nucleus
NuclearExportOfmRNA = ProteinTargeting = JlocatedIn.Cell
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But data-set does not contain any reference to NuclearExportOfmRNA

v

Approach could not learn this counterexample
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Unsatisfiable Classes

Example

JlocatedIn.Cell m JlocatedIn.Nucleus = Protein

v

Causes the class NuclearExportOfmRNA to become unsatisfiable
GRO entails

v

NuclearExportOfmRNA m Protein = L
NuclearExportOfmRNA = 3locatedIn.Nucleus
NuclearExportOfmRNA = ProteinTargeting = JlocatedIn.Cell

v

But data-set does not contain any reference to NuclearExportOfmRNA

v

Approach could not learn this counterexample

Idea
Remove concept-names not occurring in the data-set before evaluation?
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Further Results

» Role depth < 1, top-50 concept-names
3101 GCls extracted
consistent

remove 130 GCls to obtain no unsatisfiable classes (= 4.2%)
821 entailed by the GRO (=~ 26.5%)

v

vV vy
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Further Results

» Role depth < 1, top-50 concept-names

3101 GCls extracted

> consistent

» remove 130 GCls to obtain no unsatisfiable classes (~ 4.2%)
» 821 entailed by the GRO (~ 26.5%)

» Role depth < 2, top-5 concept-names

v
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Further Results

» Role depth < 1, top-50 concept-names
3101 GCls extracted
» consistent

» remove 130 GCls to obtain no unsatisfiable classes (~ 4.2%)
» 821 entailed by the GRO (~ 26.5%)
» Role depth < 2, top-5 concept-names
» 473 GCls extracted
» consistent

» removing 20 GCl to obtain no unsatisfiable classes (~ 4.2%)
> 39 entailed (~ 8.2%)

v
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Using Confidence

Idea

Consider also GCls which are correct in a “large number” of cases.
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Using Confidence
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Consider also GCls which are correct in a “large number” of cases.

Experiment

» Role depth < 1, top-30 concept-names, confidence > 0.9, # 1
» 18 GCls extracted
» consistent with GRO, no unsatisfiable classes
» 2 (1) entailed by the GRO:

Protein m 3fromSpecies. T m Gene = JFfromSpecies.Eukaryote
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Using Confidence

Idea

Consider also GCls which are correct in a “large number” of cases.

Experiment

» Role depth < 1, top-30 concept-names, confidence > 0.9, # 1
» 18 GCls extracted
» consistent with GRO, no unsatisfiable classes

2 (1) entailed by the GRO:

v

Protein m 3fromSpecies. T m Gene = JFfromSpecies.Eukaryote

v

16 inconclusive

Experimental Evaluation of GCls Learned from Textual Data 2015-06-08 13 / 14



Using Confidence

Idea

Consider also GCls which are correct in a “large number” of cases.

Experiment

» Role depth < 1, top-30 concept-names, confidence > 0.9, # 1
» 18 GCls extracted
» consistent with GRO, no unsatisfiable classes

2 (1) entailed by the GRO:

v

Protein m 3fromSpecies. T m Gene = JFfromSpecies.Eukaryote

v

16 inconclusive
» Jencodes.MessengerRNA = Gene
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Using Confidence

Idea

Consider also GCls which are correct in a “large number” of cases.

Experiment

» Role depth < 1, top-30 concept-names, confidence > 0.9, # 1
» 18 GCls extracted
» consistent with GRO, no unsatisfiable classes

2 (1) entailed by the GRO:

v

Protein m 3fromSpecies. T m Gene = JFfromSpecies.Eukaryote

v

16 inconclusive

» Jencodes.MessengerRNA = Gene
» JfromSpecies. T = IfromSpecies.Eukaryote
> JfromSpecies.Eukaryote m JhasPart.AminoAcid = Protein
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Summing Up

What has been done?

» Discussed approach by Baader and Distel to learn GCls from relational
data

» Applied this approach to annotated text from the biomedical domain

» Conducted some first experiments to evaluate the results

Issues
» Hard to evaluate GCls that have been learned

» Open World Assumption vs. Closed World Assumption (inherent?)

What’s next?
» Compute recall
» Clean up GRO from unknown concept-names before evaluation

» Devise evaluation that is “independent” from the data-set?
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