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Stochastic Local Search Algorithms

I A probability distribution for a finite set S is a function D : S 7→ [0, 1] with∑
s∈S

D(s) = 1

I LetD(S) denotes the set of probability distributions over a given set S

I Given a (combinatorial) problem Π, a stochastic local search algorithm for
solving an arbitrary instance π ∈ Π is defined by the following components:

. the search space S(π),
which is a finite set of candidate solutions s ∈ S(π)

. a set of solutions S′(π) ⊆ S(π)

. a neighbourhood relation on S(π): N(π) ⊆ S(π)× S(π)

. a finite set of memory states M(π)

. an initialization function init(π) :→ D(S(π)× M(π))

. a step function step(π) : S(π)× M(π)→ D(S(π)× M(π))

. a termination predicate terminate(π) : S(π)× M(π)→ {⊥,>}
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Some Notation

I We often write step(π, s,m) instead of step(π)(s,m) and,
likewise, for terminate and other functions

I We omit M(π) and the parameter m if no memory is used
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General Outline of a Stochastic Local Search Algorithm

I procedure SLSDecision(π)
input π ∈ Π
output s ∈ S′(π) or “no solution found”
(s,m) = selectRandomly(S(π)× M(π), init(π));
while not terminate(π, s,m) do

(s,m) = selectRandomly(S(π)× M(π), step(π, s,m));
end
if s ∈ S′(π) then

return s
else

return “no solution found”
end

end

. where selectRandomly gets a pair (S(π)× M(π),D) as input
and yields the result of a random experiment selecting an element of
S(π)× M(π) wrt the probability distribution D ∈ D(S(π)× M(π))
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A Simple SLS Algorithm for SAT: Uninformed Random Walk

I Let F be a CNF-formula with variables 1, . . . , n

I The search space S(F ) is the set of all interpretations for F

I The set of solutions S′(F ) is the set of models for F

I The neighbourhood relation on S(F ) is the one-flip neighbourhood
N(F , I, I′) iff there exists A ∈ {1, . . . , n} such that AI 6= AI′

and for all A′ ∈ {1, . . . , n} \ {A} we find A′I = A′I′

I We will not use memory

I The initialization function yields the uninformed random distribution

init(F , I) =
1
|S(F )|

=
1
2n for all I ∈ S(F )

I The step function maps any I to the uniform distribution over all its neighbours

step(F , I, I′) =
1

|{I′ | N(F , I, I′)}|
=

1
n

for all I′ with N(F , I, I′)

I terminate(F , I) holds iff I |= F
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Evaluation Functions

I Given a (combinatorial) problem Π and let π ∈ Π;
an evaluation function g(π) : S(π) 7→ R is a function
which maps each candidate solution to a real number such that
the global optima of g(π) correspond to the solutions of π

I Optima are usually minima or maxima

I g(π) is used to rank candidate solutions

I Concerning SAT: Let F be a CNF-formula and I an interpretation

. Often, g(F )(I) = g(F , I) is the number of clauses of F not satisfied by I , i.e.,

g(F , I) = |{C ∈ F | I 6|= C}|

. Consequently, g(F , I) = 0 iff I |= F
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Iterative Improvement

I Given Π, π ∈ Π, S(π), N(π) and g(π)

I We assume that the solutions of π correspond to global minima of g(π)

I Iterative improvement (II) starts from a randomly selected point in the
search space and tries to improve the current candidate solution wrt g(π)

. Initialization function

init(π, s) =
1

|S(π)|
for all s ∈ S(π)

. Neighbouring candidate solutions

N′(s) = {s′ | (s, s′) ∈ N(π) and g(π, s′) < g(π, s)} for all s ∈ S(π)

. Step function

step(π, s, s′) =

{
1

|N′(s)| if s′ ∈ N′(s)

0 otherwise
for all s, s′ ∈ S(π)
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Local Minima and Escape Strategies

I The step function in the definition of iterative improvement is ill-defined!

I Given Π, π ∈ Π, S(π), N(π) and g(π)

I A local minimum is a candidate solution s ∈ S(π)
such that for all (s, s′) ∈ N(π) we find g(π, s) ≤ g(π, s′)

I A local minimum s ∈ S(π) is strict if for all (s, s′) ∈ N(π)
we find g(π, s) < g(π, s′)

. If II encounters a local minimum which does not correpsond to a solution,
then it “gets stuck”; step(π, s) is not a probability distribution!

I Escape Strategies

. Restart re-initialize the search whenever a local minimum is encountered

. Random Walk perform a randomly chosen non-improving step

. Tabu List forbid steps to recently visited candidate solutions

I Even with these escape strategies there is no guarantee that
an SLS-algorithm does eventually find a solution
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Randomized Iterative Improvement – Preliminaries

I We want to escape local minima by selecting non-improving steps

I Walk Probability wp ∈ [0, 1]

I stepURW the step function of uninformed random walk

I stepII
a variant of the step function used in the iterative improvement algorithm,
which differs only in that a minimally worsening neighbour is selected
if N′(s) = ∅
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The Step Function of Randomized Iterative Improvement

procedure stepRII(π, s,wp)
input π ∈ Π, s ∈ S(π), wp ∈ [0, 1]
output s′ ∈ S(π)
u = random([0, 1]);
if u ≤ wp then

s′ = stepURW(π, s);
else

s′ = stepII(π, s);
end
return s′

end
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The Randomized Iterative Improvement Algorithm

I Termination

. after limit on the CPU time

. after limit on the number of search steps,
i.e., iterations of the while loop or

. after a number of search steps have been performed without improvement

I Properties

. Arbitrarily long sequences of random walk steps may occur

. The algorihm can escape from any local minimum

. Solutions can be (provably) found with arbitrarily high probability
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GUWSAT

I Randomized iterative improvement algorithm for SAT, but

. instead of stepII

. a best improvement local search algorithm is applied, i.e.,

II in each step a variable is flipped that leads to a
maximal increase in the evaluation function

I The algorithm does not terminate in a local minima

. The maximally improving variable flip is a least worsening step in this case

I The search in stepURW is still uninformed
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Tabu Search

I Iterative improvement algorithm using a form of short-term memory

I It uses a best improvement strategy

I Forbids steps to recently visited candidate solutions

. by memorizing recently visited solutions explicitely or

. by using a parameter tt called tabu tenure

I Sometimes, an aspiration criterion is used to override the tabu status
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The Step Function of Tabu Search

procedure stepTS(π, s, tt)
input π ∈ Π, s ∈ S(π), tt
output s′ ∈ S(π)
N′ = admissableNeighbours(π, s, tt);
s′ = selectBest(N′);
return s′

end
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The GSAT Architecture

I GSAT was one of the first SLS algorithms for SAT
(Selman, Levesque, Mitchell:
A New Method for Solving Hard Satisfiability Problems.
In: Proc. AAAI National Conference on Artificial Intelligence, 440-446: 1992)

I Given CNF-formula F and interpretation I , GSAT uses

. the one-flip neighbourhood relation

. the evaluation function

g(F , I) = |{C ∈ F | I 6|= C}|

. the score g(F , I)− g(F , I′) of a variable A under I
where I′ is obtained from I by flipping A

I At the time of its introduction GSAT outperformed the best systematic
search algorithms for SAT available at that time
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The Basic GSAT Algorithm

procedure gsat(F ,maxtries,maxsteps)
input F ∈ L(R), maxtries,maxsteps ∈ N+

output model of F or ”no solution found”
for try = 1 to maxtries do

I = randomly chosen interpretation of F ;
for step = 1 to maxsteps do

if I |= F then
return I

end
A = randomly selected variable with maximal score;
I = I with A flipped;

end
end
return “no solution found”

end
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GSAT with Random Walk (GWSAT)

I Consider GSAT, but use a randomised best-improvement search method

I Conflict-directed random walk steps In a random walk step do

. randomly select a currently unsatisfied clause C

. randomly select a variable A occurring in C

. Flip A

I GWSAT

. Use the basic GSAT algorithm

. At each local step decide with fixed walk probability wp whether to do

II a standard GSAT step or

II a conflict-directed random walk step

I In contrast to GUWSAT, GWSAT performs informed random walk steps

I GWSAT achieves substantially better performance than basic GSAT
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GSAT with Tabu Search (GSAT/Tabu)

I Consider GSAT, but after A has been flipped,
it cannot be flipped back within the next tt steps

I With each variable A a tabu status is associated as follows

. Let t be the current search step number

. Let tt ∈ N

. Let tA be the search step number, when A was flipped for the last time

. Initialize tA = −tt

. Every time variable A is flipped set tA = t

. Variable A is tabu iff t − tA ≤ tt
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The WalkSAT Architecture

procedure WalkSAT(F ,maxtries,maxsteps, select)
input F ∈ L(R), maxtries,maxsteps ∈ N+

heuristic function select
output model of F or ”no solution found”
for try = 1 to maxtries do

I = randomly choosen interpretation of F ;
for step = 1 to maxsteps do

if I |= F then
return I

end
C = randomly selected clause unsatisfied under I ;
A = variable selected from C according to select;
I = I with A flipped;

end
end
return “no solution found”

end
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Application of a Solver

I Consider walksat

. Check out the internet for walksat

. Walksat accepts .cnf-files and attempts to find a model

. E.g., walksat -sol < axioms.cnf

I WalkSAT as well as GSAT and GWSAT are sound but incomplete
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Novelty

I Considers variables in the selected clauses sorted according to their score

I If the best variable is not the most recently flipped one, it is flipped,
otherwise, it is flipped with a probability 1− p,
while in the remaining cases, the second-best variable is flipped,

. where p ∈ [0, 1] is a parameter called noise setting

I Is in many cases substantially better than WalkSAT

I It suffers from essential incompleteness

I McAllester, Selman, Kautz: Evidence for Invariants in Local Search.
Proc. 14th National Conference on Artificial Intelligence (AAAI), 321-326:1997
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Novelty+

I In each search step, with a user-specified probability wp,
the variable to be flipped is randomly selected from the selected clause,
otherwise, the variable is selected according to the heuristics from Novelty

I Is probabilistically approximately complete

I In practice, wp = 0.01 is sufficient

I Hoos: On the run-time behavior of stochastic local search algorithms for SAT.
Proc. 16th National Conference on Artificial Intelligence (AAAI), 661-666: 1999
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Adaptive Novelty+

I Optimal value for noise p varies significantly between problem instances

I Idea Adapt p

. Initially p = 0

. Rapid improvement typically leading to stagnation

. Increase the value of p until escape from stagnation

. Gradually decrease the value of p

. Repeat this process until solution is found

I Hoos: An Adaptive Noise Mechanism for WalkSAT.
Proc. 18th National Conference on Artificial Intelligence (AAAI), 655-660: 2004

I Implemented in the UBCSAT framework
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Final Remarks

I This section is based on Hoos, Stützle: Stochastic Local Search.
Morgan Kaufmann/Elsevier, San Francisco: 1998

I So far: stochastic local search

. Sound but usually incomplete

. Often quite fast

I Alternative: systematic search

. Decides SAT problems

. Sound and complete

. May be too slow

. In real applications it is often known that the problem is solvable
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