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ABSTRACT
In a recent approach, Baader and Distel proposed an algo-
rithm to axiomatize all terminological knowledge that is valid
in a given data set and is expressible in the description logic
ℰℒK. This approach is based on the mathematical theory of
formal concept analysis. However, this algorithm requires
the initial data set to be free of errors, an assumption that
normally cannot be made for real-world data. In this work,
we propose a first extension of the work of Baader and Distel
to handle errors in the data set. The approach we present
here is based on the notion of confidence, as it has been
developed and used in the area of data mining.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Representation Languages; I.2.6
[Artificial Intelligence]: Learning—Knowledge Acquisi-
tion, Concept Learning

1. INTRODUCTION
Every logic-based expert system needs a certain amount of
knowledge about the domain it is supposed to act in. This
knowledge must be represented in a way suitable for the
expert system to take actions and to make decisions. One
of the most popular ways to present such knowledge is to
use description logic knowledge bases (also called ontologies).
Therein, description logics make use of concept descriptions
to express two kinds of knowledge: assertional knowledge
stating that certain individuals satisfy a particular concept
description, and terminological knowledge stating certain
relationships between concept descriptions. For example, we
could state that the individual Tom is a cat, and that every
cat is a mammal that hunts a mouse. This could be written
in the description logic ℰℒK as

CatpTomq,

Cat Ď Mammal[ Dhunts.Mouse.
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These are two forms of axioms, where the former is called
an assertional axiom and the latter is called a ℰℒK-general
concept inclusion (GCI) and is particular example of a ter-
minological axiom. An ontology is then just a collection of
assertional axioms (collected in the ABox of the ontology)
and terminological axioms (collected in the TBox).

One of the biggest obstacles in using ontologies lies in the
difficulty of their construction. One of the most popular
example of an ontology that is used in real-world applica-
tions is the Systematized Nomenclature Of Medicine
Clinical Terms (SNOMED-CT) [17], a medical ontology
that is used to guarantee a common language for medical
treatment, among others. The development of SNOMED-
CT took more than forty years and the ontology itself now
contains more than 311,000 concept descriptions. Clearly, de-
veloping and maintaining SNOMED-CT is an expensive and
time-consuming task, which is mostly conducted by human
experts.

On the other hand, ontologies are only a different way to
represent knowledge which is already available, mostly in
a form which is not suitable for computers to be processed
easily, e. g. as textual publications. It would be advantageous
to provide methods to automatically extract ontologies from
such data. Of course, this would be a challenging task and
the resulting ontologies may not be as good as one would
like them to be. However, starting from these ontologies,
one could use other methods to refine these ontologies, as
for example axiom pinpointing [7], to find reasons for errors
in the ontology, or completion methods [6] to ensure that all
relevant facts are present in this ontology.

A recent approach in the direction of learning ontologies
from data is the work of Baader and Distel [12, 5, 4]. This
work concentrates on extracting compact representations
(bases) of all valid ℰℒK-GCIs of a finite interpretation. De-
scription logic interpretations are used to define the semantics
of description logics, and are essentially vertex- and edge-
labeled graphs. As such, they can also be seen as a different
flavor of linked data [8]. If the interpretation contains in-
stances of a particular domain of interest for which we would
like to have an ontology, then GCIs valid in this interpreta-
tion can be seen as terminological knowledge which should
be present in our ontology. Thus, we can view the work
of Baader and Distel as a way to extract terminological
knowledge from linked data, and thus as a way to (partially)
construct ontologies form linked data.

A disadvantage of the approach of Baader and Distel is
that it requires the initial data to be perfect, i. e. free of errors,
simply due to the fact that only valid GCIs are considered.



In other words, errors in the data may lead to certain GCIs
not being found, and a human expert would have to add
them manually.

A natural attempt to circumvent the restriction of perfect
data is the following: instead of considering only valid GCIs
of an interpretation, one could also consider GCIs which are
almost valid, i. e. valid except for a small set of counterexam-
ples. Of course, this may lead to certain GCIs being found
which are not correct, but whose set of counterexample is
just too small. However, one could argue that it is much
more difficult for a human expert to come up with missing
GCIs than identifying GCIs which are not correct.

To formalize the idea of GCIs being “almost true,” one can
use the notion of confidence from association rule mining [1].
The goal of this paper is to generalize results of Baader and
Distel to GCIs with high confidence, i. e. to find a base of all
GCIs which have high confidence in a given interpretation.
With respect to practical applications, this would mean
that we can extract from a certain amount of linked data
terminological knowledge while ignoring rarely occurring
errors. The resulting set of GCIs can then be used for further
refinement to obtain suitable ontologies.

This paper is structured as follows. We shall first introduce
the necessary definitions from the fields of description logics
and formal concept analysis. Due to technical reasons, we
shall also introduce the description logic ℰℒKgfp, an extension

of ℰℒK by cyclic concept descriptions. We shall also review
the main results of [12] that are relevant for our considera-
tions. Thereafter, we present the notion of confident GCIs
and confident bases in Section 5.1 and illustrate the use of
these notions by means of an example. After this, we describe
a way to obtain confident ℰℒKgfp-bases in Section 5.2, and

how to transform them into ℰℒK-bases in Section 5.3. We
finish this paper with an outlook on further research.

The results of this paper are based on two technical re-
ports [10, 11].

2. RELATED WORK
As already noted, our work is largely based on the work of
Baader and Distel. However, it also bears some similarities to
Statistical Schema Induction, as presented in [19]. Statistical
Schema Induction is a method constructing terminological
axioms expressible in ℰℒ` from sets of RDF triples. For
this, data tables are constructed from the RDF triples whose
attributes are certain concept descriptions. From these data
tables terminological axioms are extracted by means of asso-
ciation rule mining, and these rules are then used to yield
terminological axioms.

While this approach is quite similar to ours, it has some
fundamental differences. The most notable one is that in
Statistical Schema Induction only certain axioms are ex-
tracted (namely those constructible from attributes in the
data tables), whereas in our approach a compact representa-
tion of all terminological axioms with high confidence and
expressible in ℰℒK is found. Thus in contrast to Statistical
Schema Induction, our approach enjoys a certain form of
completeness.

As our approach makes use of formal concept analysis
in conjunction with data mining methods it is also worth
to note previous works in this direction. Most notably are
Stumme et. al. [18], which use formal concept analysis to
obtain compact representations of association rules by means
of Luxenburger’s base [15], and Zaki et. al. [20], which use

formal concept analysis to provide a theoretical foundation
of the theory of association rules.

3. PRELIMINARIES
In the following subsection we shall introduce the necessary
definitions from the fields of description logics and formal
concept analysis, as they are needed for our further consider-
ations.

3.1 The Description Logics ℰℒK and ℰℒK
gfp

In this section, we shall introduce the description logic ℰℒK,
and to a certain extent also the description logic ℰℒKgfp. How-
ever, we shall leave out certain details due to space restric-
tions.

Let 𝑁𝐶 and 𝑁𝑅 be two disjoint sets. We think of 𝑁𝐶 as
the set of concept names and of 𝑁𝑅 as the set of role names.
An ℰℒ-concept description 𝐶 is then formed according to the
rule

𝐶 ::“ 𝐴 | J | 𝐶 [ 𝐶 | D𝑟.𝐶

where 𝐴 P 𝑁𝐶 and 𝑟 P 𝑁𝑅. For example, if we choose
𝑁𝐶 “ tCat,Mouse u and 𝑁𝑅 “ t hunts u, then some valid
ℰℒ-concept descriptions are

Cat,Cat[Mouse,Cat[ Dhunts.Mouse.

An ℰℒK-concept description is either K or an ℰℒ-concept
description.

The semantics of ℰℒK-concept descriptions are defined
through the notion of interpretations. An interpretation ℐ “
p∆ℐ , ¨ℐq consists of a set ∆ℐ of elements and an interpretation
function ¨ℐ which maps concept names 𝐴 P 𝑁𝐶 to subsets
𝐴ℐ of ∆ℐ and role name 𝑟 P 𝑁𝑅 to subsets 𝑟ℐ of ∆ℐ

ˆ∆ℐ .
Equivalently, interpretations can be thought of as vertex-
and edge-labeled graphs. Such a graph consists of the vertex
set ∆ℐ and the labels of a vertex 𝑥 P ∆ℐ are all 𝐴 P 𝑁𝐶

such that 𝑥 P 𝐴ℐ . An edge p𝑥, 𝑦q between two elements
𝑥, 𝑦 P ∆ℐ exists if and only if there exists an 𝑟 P 𝑁𝑅 such
that p𝑥, 𝑦q P 𝑟ℐ . The edge p𝑥, 𝑦q is then labeled with all
𝑟 P 𝑁𝑅 such that p𝑥, 𝑦q P 𝑟ℐ .

The interpretation function ¨ℐ can naturally be extended
to all ℰℒK-concept descriptions 𝐶,𝐷 in the following way:

K
ℐ
“ H

J
ℐ
“ ∆ℐ

p𝐶 [𝐷qℐ “ 𝐶ℐ
X𝐷ℐ

pD𝑟.𝐶qℐ “ t 𝑑 P ∆ℐ
| D𝑒 P ∆ℐ : p𝑑, 𝑒q P 𝑟ℐ ^ 𝑒 P 𝐶ℐ

u,

where 𝑟 P 𝑁𝑅. We shall call the set 𝐶ℐ the extension of 𝐶
in ℐ. For each 𝑥 P ∆ℐ we shall say that 𝑥 satisfies 𝐶 if and
only if 𝑥 P 𝐶ℐ .

As we shall see in Section 4, the description logic ℰℒK is
not sufficient for our needs, as it in general does not allow
us to represent model-based most-specific concept description
(which will be introduced then). We therefore also want to
introduce the description logic ℰℒKgfp, an extension of ℰℒK
which uses greatest fixpoint semantics.

The main distinction of ℰℒKgfp over ℰℒK is that it allows
for cyclic concept descriptions. More formally, let 𝑁𝐷 be
a set disjoint to both 𝑁𝐶 and 𝑁𝑅. We call this set the set
of defined concept names. A concept definition is then an
expression of the form 𝐴 ” 𝐶, where 𝐴 P 𝑁𝐷 and 𝐶 is



Cat Mouse

hunts

hunts

Figure 1: Graph of an ℰℒKgfp-concept description

an ℰℒK-concept description which can use in the place of
concept names from 𝑁𝐶 also defined concept names from
𝑁𝐷. Let 𝒯 be a finite set of concept definitions. Then the set
𝑁𝐷p𝒯 q is defined as the set of all defined concept names from
𝑁𝐷 that appear in some concept definition in 𝒯 . 𝒯 is called
a cyclic TBox if and only if each element in 𝑁𝐷p𝒯 q appears
exactly once on the left-hand side of a concept definition
from 𝒯 .

An ℰℒgfp-concept description is a pair p𝐴, 𝒯 q, where 𝒯 is a
cyclic TBox and 𝐴 P 𝑁𝐷p𝒯 q. An ℰℒKgfp-concept description
is either of the form K or is an ℰℒgfp-concept description. As
an example of an ℰℒKgfp-concept description we can consider
the concept description 𝐶, where

𝐶 “ p𝐴, t𝐴 ” Cat[ Dhunts.𝐵 (1)

𝐵 ” Mouse[ Dhunts.𝐴 uq. (2)

Intuitively, 𝐶 represents a cat 𝐴, which hunts a mouse 𝐵
which again hunts 𝐴, a common situation in the old cartoon
series “Tom and Jerry.”

To define the semantics for ℰℒKgfp it is necessary to resolve

the cyclic dependencies within ℰℒKgfp-concept descriptions.
This is done using greatest fixpoint semantics [16, 3]. Since
the exact definition of the semantics of ℰℒKgfp is not necessary
for our further considerations, we leave out the details and
refer the reader to the corresponding publications.

Instead, we want to describe the technique of unravelling,
which shall allow us to transform ℰℒKgfp-concept descriptions

into ℰℒK-concept descriptions in a suitable way. Let 𝐶 “

p𝐴𝐶 , 𝒯𝐶q be an ℰℒKgfp-concept description. We assume that
𝐶 is normalized, i. e. every concept definition in 𝒯𝐶 is of the
form

𝐵 ” 𝑃1 [ . . .[ 𝑃𝑛 [ D𝑟1.𝑄1 [ . . . D𝑟𝑚.𝑄𝑚,

where 𝑃1, . . . , 𝑃𝑛 are concept names from 𝑁𝐶 , 𝑟1, . . . , 𝑟𝑚 P
𝑁𝑅 and 𝑄1, . . . , 𝑄𝑚 are defined concept names from 𝑁𝐷.
Normalizing 𝐶 can be achieved in polynomial time [2]. We
then can associate with 𝐶 a labeled graph with vertices
𝑁𝐷p𝒯 q. Roughly speaking, the vertex 𝐵 from above is
labeled with 𝑃1, . . . , 𝑃𝑛 and has edges to 𝑄1, . . . , 𝑄𝑚, each
labeled with 𝑟1, . . . , 𝑟𝑚, respectively.

If now 𝑘 P N is given, we can unravel this graph up to
depth 𝑘, keeping all labels. It is not hard to see that for this
graph we can associate an ℰℒK-concept description 𝐶𝑘 that is
represented by the graph. For example, we can consider the
concept description 𝐶 from (1), which is already normalized.
Its graph is shown in Figure 1. Then

𝐶2 “ Cat[ Dhunts.pMouse[ Dhunts.Catq.

For convenience, we define 𝐶0 “ J.
We are going to use unravelling to transform ℰℒKgfp-bases

into ℰℒK-bases. For this, the following property of unravelling
will be helpful.

3.1 Lemma (Lemma 5.19 of [12]) Let 𝐶 and 𝐷 be ℰℒKgfp-
concept descriptions. Then for each 𝑘 P N it is true that

i. pD𝑟.𝐶q𝑘 ” D𝑟.𝐶𝑘´1 for 𝑘 ą 0 and 𝑟 P 𝑁𝑅;

ii. p𝐶 [𝐷q𝑘 ” 𝐶𝑘 [𝐷𝑘.

It can be shown that 𝐶 Ď 𝐶𝑘 is true for each 𝑘 P N.
Even more, if 𝑘1 ă 𝑘2, then 𝐶𝑘2 Ď 𝐶𝑘1 . However, as the
interpretation ℐ is finite, the sequence

p𝐶0q
ℐ
Ě p𝐶1q

ℐ
Ě p𝐶2q

ℐ
Ě . . .

must eventually stabilize. As the following lemma shows, this
can be achieved uniformly for all ℰℒKgfp-concept descriptions.

3.2 Lemma (Lemma 5.5 of [12]) Let ℐ be a finite inter-
pretation. Then there exists a number 𝑑 P N such that
p𝐶𝑑q

ℐ
“ 𝐶ℐ is true for all ℰℒKgfp-concept descriptions 𝐶.

3.2 General Concept Inclusions
As we have already mentioned, description logics can be
used to formalize knowledge in the form of description logic
knowledge bases. In particular, these knowledge bases contain
terminological knowledge, whose automatic extraction from
data is the main focus of this work.

Terminological knowledge is represented in the form of
general concept inclusions (GCIs). These are expressions of
the form 𝐶 Ď 𝐷, where 𝐶 and 𝐷 are concept descriptions.
We speak of ℰℒK-GCIs if both 𝐶 and 𝐷 are ℰℒK-concept
descriptions, and likewise for other description logics. An ex-
ample of an ℰℒK-GCI would be Cat[Mouse Ď K, intuitively
stating that nothing can be at the same time a cat and a
mouse.

The semantics of GCIs is again defined via interpretations.
We say that an interpretation ℐ is a model of a GCI 𝐶 Ď 𝐷
if and only if 𝐶ℐ

Ď 𝐷ℐ . If ℐ is a model of 𝐶 Ď 𝐷, then we
shall also say that 𝐶 Ď 𝐷 is valid in ℐ. Intuitively, 𝐶 Ď 𝐷
states that every element of ℐ that satisfies 𝐶 also satisfies
𝐷. If 𝐶 Ď 𝐷 is valid in every possible interpretation we shall
say that 𝐶 is subsumed by 𝐷. This fact is commonly also
denoted by 𝐶 Ď 𝐷 (as a statement, not an expression).

If ℒ is a set of GCIs and 𝐶 Ď 𝐷 is another GCI, then we
say that ℒ entails 𝐶 Ď 𝐷 and write ℒ |ù p𝐶 Ď 𝐷q, if and
only if for every interpretation 𝒥 which is a model of all
GCIs in ℒ, the interpretation 𝒥 is also a model of 𝐶 Ď 𝐷.

Since we are going to extract terminological knowledge
from interpretations, we can ask for the set of all ℰℒKgfp-GCIs
for which ℐ is a model. We shall denote this set Thpℐq and
call it the theory of ℐ. A base of ℐ is a set ℬ Ď Thpℐq such
that every GCI from Thpℐq is already entailed by ℬ.

3.3 Formal Concept Analysis
In this section we briefly introduce some basic notions from
formal concept analysis [14] that are necessary for our con-
siderations.

The fundamental notion of formal concept analysis is the
one of a formal context. A formal context is a triple K “

p𝐺,𝑀, 𝐼q where 𝐺 and 𝑀 are sets and 𝐼 Ď 𝐺ˆ𝑀 . Intuitively,
we think of the set 𝐺 as the set of objects, the set 𝑀 as the
set of attributes, and of the set 𝐼 as an incidence relation
between objects and attributes. If 𝑔 P 𝐺 and 𝑚 P𝑀 , we say
that 𝑔 has the attribute 𝑚 if and only if p𝑔,𝑚q P 𝐼.



For a set of objects 𝐵 Ď 𝐺, we can ask for the set 𝐵1 of
common attributes of all objects in 𝐵, i. e.

𝐵1 “ t𝑚 P𝑀 | @𝑔 P 𝐵 : p𝑔,𝑚q P 𝐼 u.

The set 𝐵1 is called the derivation of 𝐵 in K. Dually, we
define for 𝐴 Ď 𝑀 the set 𝐴1 of all objects satisfying all
attributes in 𝐴.

In the formal context K we can ask the question whether
an object 𝑔 that has all attributes from a set 𝐴1 always
also has all attributes from a set 𝐴2, i. e. whether it is true
that 𝑔 P 𝐴11 implies 𝑔 P 𝐴12. We can formalize this question
as follows: we call the pair p𝐴1, 𝐴2q with 𝐴1, 𝐴2 Ď 𝑀 an
implication, usually written as 𝐴1 Ñ 𝐴2. We shall say that
the implication 𝐴1 Ñ 𝐴2 is valid in K if and only if 𝐴11 Ď 𝐴12.
The set of all implications 𝐴1 Ñ 𝐴2 with 𝐴1, 𝐴2 Ď 𝑀 is
denoted by Impp𝑀q, and the set of all valid implications of
K is called its theory and is denoted by ThpKq.

A set ℒ Ď Impp𝑀q of implications entails an implication
𝐴1 Ñ 𝐴2 if and only if for all contexts in which ℒ is true,
the implication 𝐴1 Ñ 𝐴2 is true as well. A set ℒ Ď ThpKq
is called a base of K if and only if all valid implications of K
are entailed by ℒ.

It is obvious that we can extend each set 𝒦 Ď ThpKq to
a base of K. We call ℒ Ď ThpKq a base with background
knowledge 𝒦 if and only if ℒY𝒦 is a base of K. If 𝒦 “ H,
then bases with background knowledge 𝒦 are just bases of
K.

A particularly interesting base is the so called canonical
base CanpK,𝒦q of K, for some given background knowledge
𝒦. Making the definition of this base understandable is
hardly possible in the given amount of space, and we refer
the reader to [14] for further details. However, we still note
that it is well known that CanpK,𝒦q is a base of smallest
cardinality with background knowledge 𝒦, i. e. every set of
implications with less elements than CanpK,𝒦q cannot be a
base of K with background knowledge 𝒦.

4. AXIOMATIZING VALID ℰℒK-GCIS OF FI-
NITE INTERPRETATIONS

In this section we briefly introduce the main results from [12]
for axiomatizing all valid ℰℒK-GCIs of a finite interpretation.
Essentially, these results are given in Theorem 4.3 for finding
an optimal ℰℒKgfp-base, and in Theorem 4.4, which ensures

that we can effectively turn such ℰℒKgfp-bases into equivalent

ℰℒK-bases.
In the following, if not stated otherwise, we shall denote

with ℐ “ p∆ℐ , ¨ℐq a finite interpretation. The terminological
knowledge we are now interested in is just the set of all valid
ℰℒK-GCIs of ℐ. However, it is quite easy to see that the
number of valid ℰℒK-GCIs of ℐ is infinite in general, for if
𝐶 Ď 𝐷 is such a GCI, then D𝑟.𝐶 Ď D𝑟.𝐷 for 𝑟 P 𝑁𝑅 is a valid
ℰℒK-GCI as well. Therefore, we cannot simply use the set
Thpℐq as a TBox for an ontology. Instead, we try to find a
finite base ℬ of Thpℐq. Such a base would contain the same
information as Thpℐq, and since it is finite it could be used
as a TBox for an ontology. One of the main results from [12]
is to prove that such bases always exists, and also to give an
effective method to compute them. These results have been
achieved using formal concept analysis.

The central notion that has been introduced in [12] for
bringing together the description logic ℰℒK and formal con-
cept analysis is the one of model-based most-specific concept

descriptions. Roughly, for a set 𝑋 Ď ∆ℐ we are looking for a
concept description that describes the individuals in 𝑋 in the
best way possible. More formally, we call an ℰℒK-concept
description 𝐶 a model-based most-specific concept description
for 𝑋 (in ℰℒK) if and only if

‚ 𝑋 Ď 𝐶ℐ and

‚ for all ℰℒK-concept descriptions 𝐷 such that 𝑋 Ď 𝐷ℐ ,
it is true that 𝐶 Ď 𝐷.

It is clear that, if a model-based most-specific concept de-
scription for 𝑋 exists, it is unique up to equivalence. In this
case, we shall denote it with 𝑋ℐ , to stress similarities to
the formal concept analysis derivation operators. If 𝐶 is a
concept description, we shall write 𝐶ℐℐ instead of p𝐶ℐ

q
ℐ .

However, it may happen that model-based most-specific
concept descriptions in ℰℒK may not exists. To see this,
consider the example interpretation

𝑁𝐶 “ H 𝑁𝑅 “ t 𝑟 u

∆ℐ
“ t𝑥 u 𝑟ℐ “ t p𝑥, 𝑥q u.

Then all ℰℒK-concept descriptions D𝑟.D𝑟. . . . D𝑟.J have the set
𝑋 “ t𝑥 u in their extension, but there does not exist a most
specific one. On the other hand, it can be seen quite easily
that the ℰℒKgfp-concept description

p𝐴, t𝐴 ” D𝑟.𝐴 uq

is a model-based most-specific concept description of 𝑋, if we
consider ℰℒKgfp instead of ℰℒK in the above definition. Indeed
this not a coincidence, as the following result shows.

4.1 Theorem (Lemma 4.5 of [12]) Let ℐ be a finite in-
terpretation and 𝑋 Ď ∆ℐ . Then there exists a model-based
most-specific concept description of 𝑋 in ℰℒKgfp.

Because of this result we shall implicitly assume from now on
that when we are talking about model-based most-specific
concept descriptions, that we are actually meaning model-
based most-specific concept descriptions in ℰℒKgfp.

Before we continue, let us note two facts about model-base
most-specific concept descriptions. Firstly, if 𝐶 is an ℰℒKgfp-

concept description, then 𝐶 Ď 𝐶ℐℐ is always a valid GCI
of ℐ. Furthermore, 𝐶ℐℐ is subsumed by 𝐶, again for each
ℰℒKgfp-concept description 𝐶. Establishing these two facts is
not difficult, see [12].

Using the notion of model-based most-specific concept
descriptions, we can now define a formal context Kℐ which
captures all relevant information on the valid ℰℒKgfp-GCIs of
ℐ. For this, we define

𝑀ℐ :“ tKu Y𝑁𝐶 Y t D𝑟.𝑋
ℐ
| 𝑟 P 𝑁𝑅, 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu.

The set 𝑀ℐ has the particular property that all model-based
most-specific concept descriptions in ℐ are expressible in
terms of 𝑀ℐ . For brevity, let us denote for a set 𝑈 Ď 𝑀ℐ
with

d
𝑈 the concept description that is either J, when 𝑈

is empty, or 𝑉1 [ . . . [ 𝑉𝑛, when 𝑈 “ t𝑉1, . . . , 𝑉𝑛 u. Then
a concept description 𝐶 is expressible in terms of 𝑀ℐ if
and only if there exists a set 𝑁 Ď 𝑀ℐ such that 𝐶 ”

d
𝑁 .

Equivalently, 𝐶 is expressible in terms of 𝑀ℐ if and only if

𝐶 ”
l
t𝐷 P𝑀ℐ | 𝐶 Ď 𝐷 u.



Having defined the set 𝑀ℐ , we are now ready to introduce
the notion of the induced context of ℐ. This is the formal
context Kℐ “ p∆

ℐ ,𝑀ℐ ,∇q, where for all 𝑥 P ∆ℐ and 𝐶 P𝑀ℐ ,
it is true that 𝑥∇𝐶 if and only if 𝑥 P 𝐶ℐ .

The derivation operators in Kℐ , the interpretation function
¨
ℐ and model-based most-specific concept descriptions are
closely related.

4.2 Proposition Let 𝐴 Ď ∆ℐ , 𝐵 Ď 𝑀𝐼 . Then 𝐴ℐ
”

d
𝐴1

and 𝐵1 “ p
d

𝐵qℐ , where the derivations are conducted in
Kℐ .

With some more technical machinery it can even be shown
that p

d
𝐴qℐℐ

“
d

𝐴2 is true for each 𝐴 Ď𝑀ℐ . With this we
can see that the intents of Kℐ are in a close correspondence
to the model-based most-specific concept descriptions of ℐ.
This connection also extends to the canonical base of Kℐ and
ℰℒKgfp-bases of ℐ.

4.3 Theorem (5.13 and 5.18 of [12]) Let ℐ be a finite
interpretation and define

𝑆ℐ “ t t𝐶 u Ñ t𝐷 u | 𝐶,𝐷 P𝑀ℐ , 𝐶 Ď 𝐷 u.

Then the set

ℬCan :“ t
l

𝑈 Ď p
l

𝑈qℐℐ
| p𝑈 Ñ 𝑈2q P CanpKℐ , 𝑆ℐq u

is a finite ℰℒKgfp-base of ℐ of minimal cardinality.

Note that the set 𝑆ℐ contains knowledge which is trivially
true in every interpretation, but not necessarily in every
formal context. More precisely, if 𝐶 Ď 𝐷, then we do not
need to state this GCI explicitly in a base. However, the
corresponding implication t𝐶 u Ñ t𝐷 u may not necessarily
be valid in every formal context, and therefore bases of K have
to contain information to entail such implications. However,
we are only interested in bases of ℐ, which is why we add
the set 𝑆ℐ as background knowledge.

The drawback of this result is that it only yields an ℰℒKgfp-

base, because the usage of ℰℒKgfp-concept description bears
two major problems when using them as terminological ax-
ioms in knowledge bases: they employ a different TBox
semantics than normal knowledge bases do (i. e. greatest
fixpoint semantics instead of descriptive semantics), which
results in a knowledge bases with two TBox semantics, mak-
ing reasoning unnecessarily complicated. Additionally, the
cyclic nature of ℰℒKgfp-concept descriptions makes it very
hard for human expert to understand them, making the
maintainability of ontologies an even more complex task

Because of this it is desirable to obtain an ℰℒK-base instead.
Indeed, doing so is not that difficult. For this we utilize
the technique of unravelling as it has been described in
Section 3.1.

4.4 Theorem (5.21 of [12]) Suppose ℬ is a finite ℰℒKgfp-
base of ℐ. Let 𝑑 P N as in Lemma 3.2 and define

ℬunravel “ t𝐶𝑑 Ď p𝐶ℐℐ
q𝑑 | p𝐶 Ď 𝐷q P ℬ u

Y t p𝑋ℐ
q𝑑 Ď p𝑋ℐ

q𝑑`1 | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu.

Then ℬunravel is a finite ℰℒK-base of ℐ.

5. AXIOMATIZING ℰℒK-GCIS USING CON-
FIDENCE

In this section we shall generalize the results we have men-
tioned in the previous section to the setting of confident
GCIs. For this, we introduce this notion of confidence of
GCIs in the next section. Thereafter, we present a way to
extract ℰℒKgfp-bases of confident GCIs from interpretation. In
the final section, we discuss how such bases can be converted
into ℰℒK-bases.

5.1 Confident GCIs and Bases
The notion of confidence has been used in the area of data
mining to declare certain, implication-like rules as interesting
if their corresponding confidence is“high,” i. e. above a certain,
user-defined threshold. We shall use the same idea here and
introduce the notion of confidence for GCIs as follows. Let
ℐ be a finite interpretation and let 𝐶 Ď 𝐷 a (ℰℒK or ℰℒKgfp)
GCI. We define the confidence of 𝐶 Ď 𝐷 in ℐ as

confℐp𝐶 Ď 𝐷q :“

#

1 if 𝐶ℐ
“ H,

|p𝐶[𝐷qℐ |
|𝐶ℐ |

otherwise.

In other words, the confidence of 𝐶 Ď 𝐷 in ℐ is the relative
frequency that for an individual 𝑥 P 𝐶ℐ it is true that 𝑥 P 𝐷ℐ .

If 𝑐 P r0, 1s, then we say that 𝐶 Ď 𝐷 is a confident GCI of
ℐ if and only if confℐp𝐶 Ď 𝐷q ě 𝑐. The set of all confident
GCIs is denoted by Th𝑐pℐq. A set ℬ of GCIs is called a base
of Th𝑐pℐq if and only if ℬ entails exactly those GCIs that
are entailed by Th𝑐pℐq. We call ℬ a confident base of Th𝑐pℐq
if and only if ℬ is a base of Th𝑐pℐq and ℬ Ď Th𝑐pℐq. Note
that Th𝑐pℐq is not necessarily closed under entailment, so
these two notions are different in general.

To illustrate the notion of confident GCIs, we shall con-
sider an example using data from the DBpedia data set [9],
a popular collection of linked data. More precisely, the in-
terpretation ℐDBpedia we want to consider here arises from
the DBpedia data set by considering the child1 and all the
individuals that occur in a child relation with this data set.
The interpretation ℐDBpedia then contains 5262 individuals,
and the base ℬCan for this interpretation contains 1252 ℰℒKgfp-
GCIs.

However, the DBpedia data set contains occasional errors,
which are mostly due to the fact that its source, Wikipedia In-
foboxes, are quite difficult to parse. Among others, the inter-
pretation ℐDBpedia contains the individuals Teresa_Carpio,
Charles_Heung, Adam_Cheng and Lydia_Shum, which are not
instances of the concept name Person, although they are cer-
tainly denoting persons. These erroneous individuals inhibit
the GCI

Dchild.J Ď Person

to be valid in ℐDBpedia, resulting in some special “circumscrip-
tions” of this GCI to appear in the base ℬCan of ℐDBpedia.
However, if we consider the confident GCIs of ℐDBpedia for
𝑐 “ 0.95, then this GCI is extracted from ℐDBpedia. This
shows that our approach can yield reasonable results on
realistic data sets. See also [11] for more discussions on this.

5.2 A Confident ℰℒK
gfp-Base

We now consider the question how to find confident bases of
Th𝑐pℐq effectively, for some chosen 𝑐 P r0, 1s. It is apparent
that valid GCIs of ℐ are just those with confidence exactly

1Actually, we consider http://dbpedia.org/ontology/child,
but we have shortened the name for readability



1, and that Th1pℐq Ď Th𝑐pℐq. Thus, an approach to find
such a base could be to separately find bases for Th1pℐq and
Th𝑐pℐqzTh1pℐq, an idea which goes back to Luxenburger
and his work on partial implications [15]. One of the main
observation from this work, translated to our setting, is the
following: if ℬ is a base of ℐ, and p𝐶 Ď 𝐷q P Th𝑐pℐqzTh1pℐq,
then

ℬ Y t𝐶ℐℐ
Ď 𝐷ℐℐ

u |ù p𝐶 Ď 𝐷q,

simply because ℬ |ù p𝐶 Ď 𝐶ℐℐ
q and H |ù p𝐷ℐℐ

Ď 𝐷q. Thus,
let us define

Confpℐ, 𝑐q :“ t𝐶ℐℐ
Ď 𝐷ℐℐ

| 𝐶,𝐷 ℰℒKgfp-concepts,

confℐp𝐶
ℐℐ

Ď 𝐷ℐℐ
q P r𝑐, 1q u,

where we only consider GCIs up to equivalence. We can then
obtain the following result.

5.1 Theorem Let ℐ be a finite interpretation, 𝑐 P r0, 1s and
ℬ be a base of ℐ. Then ℬ Y Confpℐ, 𝑐q is a finite, confident
base of Th𝑐pℐq.

Proof It is clear that ℬYConfpℐ, 𝑐q Ď Th𝑐pℐq. Furthermore,
it has been shown in [12] that there exist only finitely many
non-equivalent model-based most-specific concept descrip-
tions of ℐ. It therefore remains to show that every GCI in
Th𝑐pℐqzTh1pℐq is entailed by ℬ Y Confpℐ, 𝑐q.

Let p𝐶 Ď 𝐷q P Th𝑐pℐqzTh1pℐq be such a GCI. It is true
that ℬ |ù p𝐶 Ď 𝐶ℐℐ

q. Furthermore, an easy calculation
shows that confℐp𝐶 Ď 𝐷q “ confℐp𝐶

ℐℐ
Ď 𝐷ℐℐ

q, hence
p𝐶ℐℐ

Ď 𝐷ℐℐ
q P Confpℐ, 𝑐q up to equivalence. Finally, H |ù

p𝐷 Ď 𝐷ℐℐ
q, and thus

ℬ Y Confpℐ, 𝑐q |ù 𝐶 Ď 𝐶ℐℐ
Ď 𝐷ℐℐ

Ď 𝐷. ˝

From the proof of the previous theorem we can easily infer
that we can weaken the prerequisites in the following way.

5.2 Corollary Let 𝒞 Ď Confpℐ, 𝑐q be such that all GCIs in
Confpℐ, 𝑐q are already entailed by 𝒞, and let ℬ Ď Th1pℐq be
such that ℬ Y 𝒞 entails every valid ℰℒKgfp-GCI of ℐ. Then
ℬ Y 𝒞 is a finite, confident base of Th𝑐pℐq.

Using Theorem 5.1, we have obtained an effective method
to compute confident bases of Th𝑐pℐq. In fact, the compu-
tation of all model-based most-specific concept descriptions,
which is needed to compute both 𝑀ℐ and Confpℐ, 𝑐q, can
be achieved using the NextClosure algorithm [13]. This
is mostly due to the fact that the mapping 𝑋 ÞÑ 𝑋ℐℐ for
𝑋 Ď ∆ℐ is a closure operator. See also [12] for more details
on this.

However, although this approach is effective, it may not be
very efficient. In particular, the computation of Confpℐ, 𝑐q
requires, if done naively, the computation of the confidence
of 𝐶ℐℐ

Ď 𝐷ℐℐ in ℐ. The computation of the confidence in
ℐ itself might be costly, if the interpretation ℐ is too large.
Thus, computing the set Confpℐ, 𝑐q may be too expensive,
as the interpretation ℐ would have to be accessed too often.

To handle this situation it may be worthwhile to transform
the task of finding a confident base of Th𝑐pℐq into a task
purely formulated in formal concept analysis. The reason
for this is that formal concept analysis is closely related
to the field of data mining [20], and a translation of our
original problem into a problem of formal concept analysis
might allow us to use algorithms from data mining for our

task. Furthermore, as accessing databases is expensive, those
algorithms are designed to access the database as less as
possible.

To make use of this tight connection between data mining
and formal concept analysis, we are going to show the fol-
lowing claim: given a finite interpretation ℐ and 𝑐 P r0, 1s,
it suffices to find a confident base Th𝑐pKℐq, i. e. a set of im-
plications with confidence at least 𝑐 in Kℐ such that every
implication with confidence at least 𝑐 in Kℐ is already entailed
by it. As we shall see, such a base can easily be transformed
into a confident base of Th𝑐pℐq. Using this approach, we can
utilize data mining algorithms to extract confident bases of
Th𝑐pKℐq to obtain confident bases of Th𝑐pℐq.

One of the crucial observations for the following considera-
tions involves a connection between entailment of GCIs and
entailment of implications. For brevity, let us define for a set
𝑀 of concept descriptions and ℒ Ď Impp𝑀q

l
ℒ “ t

l
𝑋 Ď

l
𝑌 | p𝑋 Ñ 𝑌 q P ℒ u.

Then the following statement is true.

5.3 Lemma Let 𝑀 be a set of concept descriptions and let
ℒ Ď Impp𝑀q, p𝑋 Ñ 𝑌 q P Impp𝑀q. Then ℒ |ù p𝑋 Ñ 𝑌 q
implies

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q.

Proof Let 𝒥 “ p∆𝒥 , ¨𝒥 q be an interpretation such that 𝒥 |ùd
ℒ. Let us define a formal context K𝒥 ,𝑀 “ p∆𝒥 ,𝑀,∇q via

𝑥∇𝐶 ðñ 𝑥 P 𝐶𝒥

for all 𝑥 P ∆𝒥 , 𝐶 P𝑀 .
We shall show now that K𝒥 ,𝑀 |ù ℒ. Let p𝐸 Ñ 𝐹 q P ℒ.

Then p
d

𝐸q𝒥 Ď p
d

𝐹 q𝒥 , since 𝒥 |ù
d

ℒ. It is not hard
to see that p

d
𝐸q𝒥 “ 𝐸1, where the derivation has been

done in K𝒥 ,𝑀 . Therefore, it is true that 𝐸1 Ď 𝐹 1, and thus
K𝒥 ,𝑀 |ù p𝐸 Ñ 𝐹 q.

Since ℒ |ù p𝑋 Ñ 𝑌 q, it is true that K𝒥 ,𝑀 |ù p𝑋 Ñ 𝑌 q, i. e.
𝑋 1
Ď 𝑌 1. As p

d
𝑋q𝒥 “ 𝑋 1, it is thus true that p

d
𝑋q𝒥 Ď

p
d

𝑌 q𝒥 , i. e.
d

ℒ |ù p
d

𝑋 Ď
d

𝑌 q. ˝

Note that we cannot expect the converse of this lemma
to be true in general, as it is illustrated by the following
example.

5.4 Example Consider the sets 𝑁𝐶 “ tA,B u, 𝑁𝑅 “ t r u
and 𝑀 “ tA,B, Dr.A, Dr.B u. Define ℒ “ t tA u Ñ tB u u, 𝑋 “

tDr.A u, 𝑌 “ tDr.B u. Then clearly ℒ ­|ù p𝑋 Ñ 𝑌 q, but sinced
ℒ |ù pA Ď Bq, it is true that

d
ℒ |ù p

d
𝑋 Ď

d
𝑌 q. ♢

We shall now show the main result of this section, which
will allow us to obtain confident bases of Th𝑐pℐq from confi-
dent bases of Th𝑐pKℐq. For this let us introduce the notion
of confidence for implications, i. e.

confKp𝑋 Ñ 𝑌 q :“

#

1 if 𝑋 1
“ H

|p𝑋Y𝑌 q1|
|𝑋1|

otherwise

for some formal context K “ p𝐺,𝑀, 𝐼q and p𝑋 Ñ 𝑌 q P
Impp𝑀q. If 𝑐 P r0, 1s, then the set of Th𝑐pKq denotes the
set of all implications whose confidence in K is at least 𝑐.
Furthermore, the notions of base and confident base are
defined in the obvious way.

5.5 Theorem Let ℐ be a finite interpretation and let 𝑐 P
r0, 1s. Let ℒ be a confident base of Th𝑐pKℐq. Then

d
ℒ is a

confident base of Th𝑐pℐq.



Proof (Sketch) It is easy to see that
d

ℒ Ď Th𝑐pℐq, and
we shall not show this here. Instead, we show that every
confident GCI p𝐶 Ď 𝐷q P Th𝑐pℐq already follows from

d
ℒ.

To this end we shall show that

i.
d

ℒ |ù p
d

𝑈 Ď p
d

𝑈qℐℐ
q for all 𝑈 Ď𝑀ℐ , 𝑈 ‰ H. This

in particular then implies that
d

ℒ |ù ℬCan.

ii.
d

ℒ |ù Confpℐ, 𝑐q.

If we establish the validity of these two claims, then
d

ℒ |ù
ℬCanYConfpℐ, 𝑐q. By Theorem 5.1, ℬCanYConfpℐ, 𝑐q entails
all GCIs in Th𝑐pℐq, and thus so does

d
ℒ.

For the first case let 𝑈 Ď𝑀ℐ . Since ℒ entails all implica-
tions from Th𝑐pKℐq, it entails all valid implications, hence

ℒ |ù p𝑈 Ñ 𝑈2q.

By Lemma 5.3, we obtain from this
d

ℒ |ù p
d

𝑈 Ď
d

𝑈2q.
Since

d
𝑈2 ” p

d
𝑈qℐℐ , this shows

d
ℒ |ù p

d
𝑈 Ď p

d
𝑈qℐℐ

q

as required.
For the second case, let p𝐶ℐℐ

Ď 𝐷ℐℐ
q P Confpℐ, 𝑐q. Define

𝑈 :“ 𝐶ℐ , 𝑉 :“ 𝐷ℐ . It can be shown that 𝑉 ℐ
”

d
𝑉 1, 𝑈ℐ

“d
𝑈 1, thus

l
ℒ |ù p𝑈ℐ

Ď 𝑉 ℐ
q ðñ

l
ℒ |ù p

l
𝑈 1 Ď

l
𝑉 1q.

It is straight-forward to verify that confℐp
d

𝑈 1 Ď
d

𝑉 1q “
confKℐ p𝑈

1
Ñ 𝑉 1q. Since ℒ entails all implications from

Th𝑐pKℐq, it is true that ℒ |ù p𝑈 1 Ñ 𝑉 1q. Lemma 5.3 yieldsd
ℒ |ù p

d
𝑈 1 Ď

d
𝑉 1q, hence

d
ℒ |ù p𝑈ℐ

Ď 𝑉 ℐ
q as re-

quired. ˝

Of course, we can also add the background knowledge 𝑆ℐ
to our construction, as it has been done in Theorem 4.3.

5.6 Corollary Let ℐ be a finite interpretation, 𝑐 P r0, 1s
and ℒ Ď Impp𝑀ℐq be such that ℒY 𝑆ℐ is a confident base
of Th𝑐pKℐq. Then

d
ℒ is a confident base of Th𝑐pℐq.

5.3 Unravelling ℰℒK
gfp-Bases into ℰℒK-Bases

We have seen in the previous section how we can obtain
confident ℰℒKgfp-bases of Th𝑐pℐq, and we now want to address

the problem of how to transform this base into an ℰℒK-base.
To this end, we shall consider in this section the question
how we can extend the result of Theorem 4.4 to our general
setting of confident GCIs. In other words, we shall see how
we can generalize this result to obtain an “unravelling” of
confident ℰℒKgfp-bases. The argumentation of this section is
a generalization of the corresponding proof from [12].

Let us consider Theorem 4.4 again in more detail. There
it is stated that if ℬ is a finite ℰℒKgfp-base, then the set

ℬunravel “ t𝐶𝑑 Ď p𝐶ℐℐ
q𝑑 | p𝐶 Ď 𝐷q P ℬ u

Y t p𝑋ℐ
q𝑑 Ď p𝑋ℐ

q𝑑`1 | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu,

where 𝑑 is chosen as in Lemma 3.2.
Intuitively, we can think of the second set in the definition

of ℬunravel as the part which“compensates”for our unravelling
of the cyclic concept descriptions. To make this more precise,
let us define

𝒳ℐ “ t p𝑋
ℐ
q𝑑 Ď p𝑋ℐ

q𝑑`1 | 𝑋 Ď ∆ℐ , 𝑋 ‰ Hu.

Then the following statement is true.

5.7 Lemma For each 𝑌 Ď ∆ℐ and 𝑘 ě 𝑑, it is true that

i. 𝒳ℐ |ù pp𝑌
ℐ
q𝑘 Ď p𝑌 ℐ

q𝑘`1q,

ii. 𝒳ℐ |ù pp𝑌
ℐ
q𝑘 Ď 𝑌 ℐ

q.

The set 𝒳ℐ captures the necessary entailments we need to
make our unravelling work. More precisely, let us assume that
we have given a base ℬ Y 𝒞 of Th𝑐pℐq such that ℬ contains
only valid GCIs and 𝒞 X Th1pℐq “ H. We furthermore
assume that ℬ contains only GCIs of the form 𝐸 Ď 𝐸ℐℐ .
This is not a restriction of the general case, as it can be
shown that

t𝐸 Ď 𝐸ℐℐ
u |ù p𝐸 Ď 𝐹 q

for every valid GCI 𝐸 Ď 𝐹 of ℐ. Let 𝑑 P N as in Lemma 3.2.
We can then define the unravelling of ℬ Y 𝒞 as follows:

ℬ0 “ t𝐸𝑑 Ď p𝐸ℐℐ
q𝑑 | p𝐸 Ď 𝐸ℐℐ

q P ℬ u

Y t𝐶𝑑 Ď p𝐶ℐℐ
q𝑑 | p𝐶 Ď 𝐷q P 𝒞 u

𝒞0 “ t p𝐶
ℐℐ
q𝑑 Ď p𝐷ℐℐ

q𝑑 | p𝐶 Ď 𝐷q P 𝒞 u.

Note that ℬ0 Y 𝒞0 contains only ℰℒK-GCIs. Additionally, ℬ0

consists of valid GCIs of ℐ only.

5.8 Theorem Let ℐ be a finite interpretation, 𝑐 P r0, 1s and
let 𝑑 P N be as in Lemma 3.2. Let ℬ Y 𝒞 be a confident base
of Th𝑐pℐq such that ℬ Ď Th1pℐq, 𝐶 X Th1pℐq “ H and ℬ
only contains GCIs of the form 𝐸 Ď 𝐸ℐℐ . Define ℬ0 and 𝒞0
as before. Then

i. 𝒞0 Ď Th𝑐pℐq and ℬ0 Y 𝒞0 Y 𝒳ℐ |ù 𝒞;

ii. ℬ0 Y 𝒞0 Y 𝒳ℐ |ù ℬ0.

In particular, the set ℬ0 Y 𝒞0 Y 𝒳ℐ is a confident ℰℒK-base
of Th𝑐pℐq.

6. CONCLUSIONS AND FURTHER WORK
Starting from the initial work by Baader and Distel on finding
bases of finite interpretation ℐ, we have extended this work
in the direction of considering confident GCI instead of valid
GCIs only. The idea behind this approach is to circumvent
occasional errors in the initial interpretation ℐ, which may
inhibit otherwise interesting GCIs to be extracted by the
original approach.

The extension we have presented in this paper is twofold.
Firstly, we have described two methods how a base of Th𝑐pℐq
can effectively be computed. The crucial ideas in this direc-
tion where based on previous work on partial implications
in the field of formal concept analysis. The first possibility
to obtain such a base was a simple translation of these ideas
into our setting of description logics. The second method
went further and showed that extracting confident bases of
Th𝑐pKℐq always yields confident bases of ℐ. This is particu-
larly interesting as it allows algorithms from data mining to
assist in constructing the desired base.

However, all these results only yielded ℰℒKgfp-bases of
Th𝑐pℐq. We therefore have discussed a way to transform
given ℰℒKgfp-bases of Th𝑐pℐq into ℰℒK-bases of Th𝑐pℐq. For
this, we have generalized ideas from the original approach to
our setting of confident GCIs.

It should be obvious that to make considering confident
GCIs a practicably useful approach that further research
is necessary. The main reason for this is that considering



confident GCIs is an inherently heuristic approach, and the
results always have to be subject to further processing. On
the other hand, if we want to deal with errors, which appear
mostly randomly, such heuristic methods are the best one
can hope for.

A particular problem that arises from confident GCIs is
the one of rare counterexamples. A classical example for this
is the knowledge that all birds fly except for penguins. If
we would consider a data set from which we want to learn
something about birds, and if we consider confident GCIs,
then it is highly likely that we learn that all birds fly, just
because penguins do not occur often enough. In other words,
penguins are treated as errors although they are not.

The fundamental problem one has to solve here is then to
tell the difference between errors and rare counterexamples.
Of course, such a distinction has to be made outside of the
original source, i. e. extra information is needed to decide
this. Such external information could be provided by (hu-
man) experts, which possess valid (implicit) knowledge about
the domain of interest. Following this approach it would
be most interesting to generalize the algorithm of attribute
exploration from formal concept analysis to confident GCIs.
This algorithm has been designed to assist experts in making
their implicit knowledge explicit. A generalized version of
attribute exploration for confident GCIs would then allow an
expert to tell errors from valid counterexamples, and could
even assist in systematically fixing errors in the original data
set.
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vol. 5548 of Lecture Notes in Computer Science,
Springer, pp. 146–161.

[6] Baader, F., Ganter, B., Sattler, U., and
Sertkaya, B. Completing description logic knowledge
bases using formal concept analysis. In Proceedings of

the Twentieth International Joint Conference on
Artificial Intelligence (2007), AAAI Press, pp. 230–235.
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