Exercise 1

SAT-Solving

Prof. Steffen Hölldobler, Emmanuelle-Anna Dietz Saldanha International Master Program in Computational Logic — summer term 2017
20.04.2017

Exercise 1.1

Given an interpretation I and a formula F. Compute F^{I} :
a) $(1,2,3)$

$$
F
$$

b) $(-1,2,3)$
c) $\quad(-1,-2,-3,-4,-5) \quad((-2 \vee 1) \rightarrow(3 \leftrightarrow(5 \vee 2))) \leftarrow(5 \wedge-3 \wedge 4)$
d) $(-1,-2,-3,4,5)$
e) $\quad(1,2,-3,4,5)$

Exercise 1.2

In the lecture we learnt that there exist different variants of SAT problems. This exercise will illustrate that. Let $F=1 \wedge(-1 \rightarrow(2 \vee 3 \leftrightarrow(-4 \wedge 2)))$. Solve F as a decision, search and all models variant.

Exercise 1.3

Find a model for F_{1} and F_{2}.

$$
\begin{aligned}
F_{1}= & -1 \\
& \wedge(2 \leftrightarrow 1) \\
& \wedge(2 \vee 3) \\
& \wedge(3 \rightarrow-2 \wedge-4) \\
& \wedge(4 \vee 5 \vee 6) \\
& \wedge(5 \rightarrow 7 \wedge 8) \\
& \wedge(-7 \vee 8) \\
& \wedge(5 \leftrightarrow-8)
\end{aligned}
$$

$$
\begin{aligned}
F_{2}= & (1 \vee-2) \\
& \wedge(1 \rightarrow 3) \\
& \wedge(-3 \vee 2) \\
& \wedge(-2 \vee(4 \wedge 5)) \\
& \wedge(4 \leftrightarrow-3) \\
& \wedge(5 \vee 6 \vee-2) \\
& \wedge(5 \leftrightarrow-6) \\
& \wedge(-1 \rightarrow(3 \vee 6))
\end{aligned}
$$

After finding a model on your own, try to find a model with the help of the basic algorithm presented in the lecture.

Exercise 1.4

1. Give the set of subformulas of F_{1} and F_{2}.

$$
\begin{aligned}
& F_{1}=\neg\left(p_{1} \wedge\left(p_{2} \rightarrow \neg p_{3}\right)\right) \\
& F_{2}=\left(p_{1} \leftrightarrow \neg p_{2}\right) \vee\left(p_{2} \wedge p_{1}\right)
\end{aligned}
$$

2. Are the following statements correct? Proof your answer.
(a) If all subformulas of F are satisfiable then F is also satisfiable.
(b) A formula F is satisfiable if and only if at least one subformula is satisfiable.

Exercise 1.5

1. Use the semantic equivalences presented in the lecture (slide 17) to transform stepwise the following formulas. The resulting formulas have to contain at most the \wedge, \vee and \neg connectives (and as few as possible).
(a) $F_{1}=\neg \neg \neg\left(p_{1} \vee p_{2}\right)$
(b) $F_{2}=\left(p_{1} \wedge p_{2}\right) \rightarrow p_{3}$
(c) $F_{3}=\left(p_{1} \leftrightarrow \neg p_{2}\right) \vee\left(p_{2} \wedge p_{1}\right)$
2. Proof that $F \rightarrow G \equiv \neg F \vee G$ holds.
