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Warm Up

I Used programming languages

I Size of implemented projects

I Parallel computing (multi-core, GPGPU, cluster)

I Interest in computer architecture
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Revision

I Used Data Types

I Semantics
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Formulas and Interpretations

I Let F be a formulas an I be an interpretation

I I can
. satisfy F , if F |I ≡ >
. falsify F , if F |I ≡ ⊥

I A formula can be
. unsatisfiable, F ≡ ⊥
. satisfiable
. tautologic, F ≡ >

I Property: F ≡ >, then ¬F ≡ ⊥.
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Clauses and Conjunctive Normal Forms

I Definition

. A clause is a generalized disjunction [L1, . . . , Ln], n ≥ 0,
where every Li , 1 ≤ i ≤ n, is a literal

. A clause is a unit clause if it contains precisely one literal

. A clause is a binary clause if it contains precisely two literals

I Definition

. A formula is in conjunctive normal form (clause form, CNF) iff
it is of the form 〈C1, . . . , Cm〉, m ≥ 0, and every Cj , 1 ≤ j ≤ m, is a clause

I Implementation and working assumptions

. A clause is an array of literals

II Maintained to be a set of literals (no duplicates)

II Clauses are no tautologies (excluded during parsing)

. A formula is an array of (pointers/references to) clauses

II Maintained to be a multi set
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Propositional Resolution

I Remind: clauses are considered to be sets

I Definition Let C1 be a clause containing L and C2 be a clause containing L;
The (propositional) resolvent of C1 and C2 with respect to L is the clause

(C1 \ {L}) ∪ (C2 \ {L})

C is said to be a resolvent of C1 and C2 iff
there exists a literal L such that C is the resolvent of C1 and C2 wrt L

I Examples when resolving on a

I (a ∨ ¬a)⊗ (¬a ∨ a) = (a ∨ ¬a)

I (a ∨ ¬b)⊗ (¬a ∨ b) = (b ∨ ¬b)

I (a ∨ b)⊗ (¬a ∨ b) = (b)

I Resolvents can subsume antecedents

I Usually, resolvents have more literals than antecedents
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SAT Solving
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SAT Solving - Example

I Given: Conjunction of clauses

I Task: Find satisfying interpretation for variables if possible!

F = (a ∨ c) ∧ (b̄ ∨ ē ∨ f̄ ) ∧ (ā ∨ d̄ ∨ f ) ∧ (ā ∨ b̄ ∨ d̄ ∨ e) ∧ (ā ∨ b)

I How to find a solution?

I Some questions:

1. How many combinations (solution candidates) exist for 6 Boolean variables?

2. How many percent of the candidates are cut by a unit clause?

3. How many percent of the candidates are cut by a binary, ternary, ... clause?
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Power of Modern SAT Solvers
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I RISS 4.27, SAT Competition 2014, application track

I Formulas with several million clauses and variables can be solved
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SAT Solving – With Search

I Assume a literal

I Propagate immediate consequences

I If a conflict, backtrack

I Known as DPLL (Davis Putnam Logemann Loveland)

I What are immediate consequences?

F

|b̄

ā

= (a ∨ c) ∧ (b̄ ∨ ē ∨ f̄ ) ∧ (ā ∨ d̄ ∨ f ) ∧ (ā ∨ b̄ ∨ d̄ ∨ e) ∧ (ā ∨ b)

I Assume b̄ = >, then we have J = (b̄)

I Are there variables with a forced assignment?

. ā

and c̄
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Davis Putnam Logemann Loveland (DPLL) in a Nutshell

=(a ∨ b) ∧ (b ∨ d ∨ e) ∧ (c ∨ d) ∧ (a ∨ b ∨ e ∨ f ) ∧ (a ∨ e ∨ f ) ∧ (d ∨ f ) ∧ (c ∨ e ∨ f )

DPLL

found conflict
C5 = (a ∨ e ∨ f)

Variable

Reason

a

-

b

-

c

-

d

-

e

-

f

-

a

b

c

d
d

e

f
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I add a search decision
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Davis Putnam Logemann Loveland (DPLL) in a Nutshell
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I backtrack from conflict and proceed with search
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DPLL pseudo code

I An iterative solving algorithm

IDPLL (CNF formula F )

Input: A formula F in CNF
Output: The solution SAT or UNSAT of this formula

1 J := () // start with empty interpretation
2 while true // until we find a solution
3 if F |J = ∅ then return SAT // satisfiability rule
4 if [] ∈ F |J then // there was a conflict
5 if J = J′ẋJ′′ and @ẏ ∈ J′′ then // backtrack and undo most recent decision
6 J := J′x // add the complement
7 continue
8 else return UNSAT // unsatisfiability rule
9 if (x) ∈ F |J then // unit rule

10 J := Jx // extend the interpretation
11 continue
12 if x ∈ lits(F |J ) and x /∈ lits(F |J ) then // pure literal rule
13 J := Jx
14 continue
15 J := Jẋ for some x ∈ lits(F |J ) // decide rule
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Conclusions of the DPLL Algorithm

I Chronological backtracking

I Heavily depends on the order of the decision variables

I How to perform unit propagation? How to find a unit in the formula efficiently?

Steffen Hölldobler and Norbert Manthey
SAT Solving – Algorithms 38



Unit Propagation

I How to perform unit propagation?

I How to find a unit in the formula efficiently?

I Assumption: we use the presented pseudo code as algorithm.
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Conflict Driven Clause Learning (CDCL) in a Nutshell
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Conflict Driven Clause Learning (CDCL) in a Nutshell

F =(a ∨ b)∧ (b ∨ d ∨ e)∧ (c ∨ d)∧ (a ∨ b ∨ e ∨ f )∧ (a ∨ e ∨ f )∧ (d ∨ f )∧ (c ∨ e ∨ f )

CDCL

found conflict
C5 = (a ∨ e ∨ f)

clause learning
C7 = C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
C8 = C7 ⊗ C1 : (a ∨ e)

Variable

Reason
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-

b

-
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-

d
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Conflict Driven Clause Learning (CDCL) in a Nutshell

F =(a ∨ b)∧ (b ∨ d ∨ e)∧ (c ∨ d)∧ (a ∨ b ∨ e ∨ f )∧ (a ∨ e ∨ f )∧ (d ∨ f )∧ (c ∨ e ∨ f )

CDCL

found conflict
C5 = (a ∨ e ∨ f)

clause learning
C7 = C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
C8 = C7 ⊗ C1 : (a ∨ e)

Variable

Reason

a

-

b

C1

c

-

d

-

e

C2

f

C4

a

b

c

e

d

e

f

I propagate consequences
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Conflict Driven Clause Learning (CDCL) in a Nutshell

F =(a ∨ b)∧ (b ∨ d ∨ e)∧ (c ∨ d)∧ (a ∨ b ∨ e ∨ f )∧ (a ∨ e ∨ f )∧ (d ∨ f )∧ (c ∨ e ∨ f )

CDCL

found conflict
C5 = (a ∨ e ∨ f)

clause learning
C7 = C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
C8 = C7 ⊗ C1 : (a ∨ e)

Variable

Reason

a

-

b

C1

c

-

d

-

e

C2

f

C4

a

b

c

e

d

e

f

I create and add the learned clause to the formula
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Conflict Driven Clause Learning (CDCL) in a Nutshell

F =(a ∨ b)∧ (b ∨ d ∨ e)∧ (c ∨ d)∧ (a ∨ b ∨ e ∨ f )∧ (a ∨ e ∨ f )∧ (d ∨ f )∧ (c ∨ e ∨ f )

CDCL

found conflict
C5 = (a ∨ e ∨ f)

clause learning
C7 = C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
C8 = C7 ⊗ C1 : (a ∨ e)

Variable

Reason

a

-

b

C1

c

-

d

-

e

C2

f

C4

a

b

c

e

d

e

f

I create and add the learned clause to the formula
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Conflict Driven Clause Learning (CDCL) in a Nutshell

F =(a ∨ b)∧ (b ∨ d ∨ e)∧ (c ∨ d)∧ (a ∨ b ∨ e ∨ f )∧ (a ∨ e ∨ f )∧ (d ∨ f )∧ (c ∨ e ∨ f )

CDCL

found conflict
C5 = (a ∨ e ∨ f)

clause learning
C7 = C4 ⊗ C5 : (a ∨ b ∨ e)

minimization
C8 = C7 ⊗ C1 : (a ∨ e)

Variable

Reason

a

-

b

C1

c

-

d

-

e

C8

f

-

a

b

c
e

d

e

f

I backtrack, add C8, and proceed with unit propagation
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The CDCL Algorithm

CDCL (CNF formula F )

Input: A formula F in CNF
Output: The solution SAT or UNSAT of this formula

1 J := () // start with empty interpretation
2 while true
3 while (x) ∈ F |J do // unit rule
4 J := Jx
5 if [] ∈ F |J then // conflict
6 if ∃ẏ ∈ J, such that J = J′J′′ẏJ′′′ then
7 F := F ∪ C with F |= C and C /∈ F // learning
8 J := J′ // backjumping
9 else return UNSAT // unsatisfiability rule

10 else // no empty clause in F |J
11 if atoms(J) ⊇ atoms(F ) then return SAT // satisfiability rule
12 else J := Jż with atoms(z) ⊆ atoms(F ) // decision rule
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Conclusions of the CDCL Algorithm

I Heavily depends on the order of the decision variables

I Non-Chronological backtracking, backjumping

I Learning of new clauses

I No mentioned here: restarts, clause removal

I Question: can the CDCL algorithm simulate the DPLL algorithm?
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An Intuitive Abstraction of SAT Solver Techniques
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Finding an Exit in a Maze

I Some rules

. starting point is located in the left column

. exit is on the right side (if there exists one)

. search decisions can be done only when moving right

. when moving left, use backtracking

I Property: satisfiable formulas correspond to mazes that can be solved by
searching right only
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The DPLL Algorithm

I Heuristics:

. pick the highest possible column

. then, pick the lowest column
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The DPLL Algorithm

I Heuristics:

. pick the highest possible column

. then, pick the lowest column
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The DPLL Algorithm

I Heuristics:

. pick the highest possible column

. then, pick the lowest column
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The DPLL Algorithm

I No decision, hence propagate
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The DPLL Algorithm

I No exit (conflict), hence backtrack
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The DPLL Algorithm

I No exit in the upper search space, hence backtrack
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The DPLL Algorithm

I Do next search decision
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The DPLL Algorithm

I Enter the same search space as before
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The CDCL Algorithm (conflict driven clause learning)

I Choose,

I Propagate,

I and Backtrack after Conflict

I . . . enters the same search space again and again.

I Let’s go a few steps back . . .
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The CDCL Algorithm (conflict driven clause learning)

I No decision, hence propagate
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The CDCL Algorithm (conflict driven clause learning)

I No exit (conflict), hence backtrack
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The CDCL Algorithm (conflict driven clause learning)

I . . . and learn a clause
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The CDCL Algorithm (conflict driven clause learning)

I No exit in upper search space, backtrack and learn
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The CDCL Algorithm (conflict driven clause learning)

I Do next search decision
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The CDCL Algorithm (conflict driven clause learning)

I Does not enter the same search space as before
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Motivating Clause Removal
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How to perform Unit Propagation

I When is a unit clause in the reduct?

I How to find a unit clause in the reduct, especially in the CDCL algorithm?
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Coming Next

I Simplification

I Parallel Search
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