

SAT Solving – Algorithms

Steffen Hölldobler and Norbert Manthey International Center for Computational Logic Technische Universität Dresden Germany

DPLL

CDCL

A solving abstraction

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Used programming languages

Used programming languages

Size of implemented projects

Used programming languages

Size of implemented projects

Parallel computing (multi-core, GPGPU, cluster)

Used programming languages

Size of implemented projects

Parallel computing (multi-core, GPGPU, cluster)

Interest in computer architecture

Revision

Used Data Types

Semantics

Formulas and Interpretations

- Let F be a formulas an I be an interpretation
- I can
 - ▷ satisfy *F*, if *F*| $_I \equiv \top$
 - ▷ falsify *F*, if $F|_I \equiv \bot$

Formulas and Interpretations

Let F be a formulas an I be an interpretation

- I can
 - ▷ satisfy *F*, if *F*| $_I \equiv \top$
 - ▷ falsify *F*, if $F|_I \equiv \bot$

A formula can be

- \triangleright unsatisfiable, $F \equiv \bot$
- ▷ satisfiable
- ▷ tautologic, $F \equiv \top$

Formulas and Interpretations

Let F be a formulas an I be an interpretation

- I can
 - ▷ satisfy *F*, if *F*| $_{I} \equiv \top$
 - ▷ falsify *F*, if $F|_I \equiv \bot$

A formula can be

- \triangleright unsatisfiable, $F \equiv \bot$
- ▷ satisfiable
- ▷ tautologic, $F \equiv \top$

• Property:
$$F \equiv \top$$
, then $\neg F \equiv \bot$.

Clauses and Conjunctive Normal Forms

Definition

- ▷ A clause is a generalized disjunction $[L_1, ..., L_n]$, $n \ge 0$, where every L_i , $1 \le i \le n$, is a literal
- > A clause is a unit clause if it contains precisely one literal
- > A clause is a binary clause if it contains precisely two literals

Clauses and Conjunctive Normal Forms

Definition

- ▷ A clause is a generalized disjunction $[L_1, ..., L_n]$, $n \ge 0$, where every L_i , $1 \le i \le n$, is a literal
- > A clause is a unit clause if it contains precisely one literal
- ▶ A clause is a binary clause if it contains precisely two literals

Definition

- ▷ A formula is in conjunctive normal form (clause form, CNF) iff it is of the form $(C_1, ..., C_m)$, $m \ge 0$, and every C_j , $1 \le j \le m$, is a clause
- Implementation and working assumptions
 - A clause is an array of literals
 - Maintained to be a set of literals (no duplicates)
 - Clauses are no tautologies (excluded during parsing)
 - A formula is an array of (pointers/references to) clauses
 - Maintained to be a multi set

Propositional Resolution

- Remind: clauses are considered to be sets
- ▶ Definition Let C₁ be a clause containing L and C₂ be a clause containing L̄; The (propositional) resolvent of C₁ and C₂ with respect to L is the clause

$$(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

C is said to be a resolvent of C_1 and C_2 iff there exists a literal *L* such that *C* is the resolvent of C_1 and C_2 wrt *L*

Examples when resolving on a

$$\blacktriangleright (a \lor \neg a) \otimes (\neg a \lor a) = (a \lor \neg a)$$

$$\blacktriangleright (a \lor \neg b) \otimes (\neg a \lor b) = (b \lor \neg b)$$

$$\blacktriangleright (a \lor b) \otimes (\neg a \lor b) = (b)$$

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

Propositional Resolution

- Remind: clauses are considered to be sets
- ▶ Definition Let C₁ be a clause containing L and C₂ be a clause containing L̄; The (propositional) resolvent of C₁ and C₂ with respect to L is the clause

$$(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

C is said to be a resolvent of C_1 and C_2 iff there exists a literal *L* such that *C* is the resolvent of C_1 and C_2 wrt *L*

Examples when resolving on a

- $\blacktriangleright (a \lor \neg a) \otimes (\neg a \lor a) = (a \lor \neg a)$
- $\blacktriangleright (a \lor \neg b) \otimes (\neg a \lor b) = (b \lor \neg b)$
- $\blacktriangleright (a \lor b) \otimes (\neg a \lor b) = (b)$

Resolvents can subsume antecedents

Propositional Resolution

- Remind: clauses are considered to be sets
- ▶ Definition Let C₁ be a clause containing L and C₂ be a clause containing L̄; The (propositional) resolvent of C₁ and C₂ with respect to L is the clause

$$(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$$

C is said to be a resolvent of C_1 and C_2 iff there exists a literal *L* such that *C* is the resolvent of C_1 and C_2 wrt *L*

- Examples when resolving on a
- $\blacktriangleright (a \lor \neg a) \otimes (\neg a \lor a) = (a \lor \neg a)$
- $\blacktriangleright (a \lor \neg b) \otimes (\neg a \lor b) = (b \lor \neg b)$
- $\blacktriangleright (a \lor b) \otimes (\neg a \lor b) = (b)$
- Resolvents can subsume antecedents
- Usually, resolvents have more literals than antecedents

SAT Solving

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

 $F = (a \lor c) \land (\bar{b} \lor \bar{e} \lor \bar{f}) \land (\bar{a} \lor \bar{d} \lor f) \land (\bar{a} \lor \bar{b} \lor \bar{d} \lor e) \land (\bar{a} \lor b)$

- How to find a solution?
- Some questions:

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

 $F = (a \lor c) \land (\bar{b} \lor \bar{e} \lor \bar{f}) \land (\bar{a} \lor \bar{d} \lor f) \land (\bar{a} \lor \bar{b} \lor \bar{d} \lor e) \land (\bar{a} \lor b)$

- How to find a solution?
- Some questions:
- 1. How many combinations (solution candidates) exist for 6 Boolean variables?

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

 $F = (a \lor c) \land (\bar{b} \lor \bar{e} \lor \bar{f}) \land (\bar{a} \lor \bar{d} \lor f) \land (\bar{a} \lor \bar{b} \lor \bar{d} \lor e) \land (\bar{a} \lor b)$

- How to find a solution?
- Some questions:
- 1. How many combinations (solution candidates) exist for 6 Boolean variables?
- 2. How many percent of the candidates are cut by a unit clause?

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

 $F = (a \lor c) \land (\bar{b} \lor \bar{e} \lor \bar{f}) \land (\bar{a} \lor \bar{d} \lor f) \land (\bar{a} \lor \bar{b} \lor \bar{d} \lor e) \land (\bar{a} \lor b)$

- How to find a solution?
- Some questions:
- 1. How many combinations (solution candidates) exist for 6 Boolean variables?
- 2. How many percent of the candidates are cut by a unit clause?
- 3. How many percent of the candidates are cut by a binary, ternary, ... clause?

Power of Modern SAT Solvers

- RISS 4.27, SAT Competition 2014, application track
- Formulas with several million clauses and variables can be solved

- Assume a literal
- Propagate immediate consequences
- ▶ If a conflict, backtrack

- Assume a literal
- Propagate immediate consequences
- ▶ If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)

- Assume a literal
- Propagate immediate consequences
- ▶ If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

 $F = (a \lor c) \land (\bar{b} \lor \bar{e} \lor \bar{f}) \land (\bar{a} \lor \bar{d} \lor f) \land (\bar{a} \lor \bar{b} \lor \bar{d} \lor e) \land (\bar{a} \lor b)$

- Assume $\bar{b} = \top$, then we have $J = (\bar{b})$
- Are there variables with a forced assignment?

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$F|_{\bar{b}} = (a \lor c) \land \qquad (\bar{a} \lor \bar{d} \lor f) \land \land (\bar{a})$$

- Assume $\bar{b} = \top$, then we have $J = (\bar{b})$
- Are there variables with a forced assignment?

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$F|_{\bar{b}} = (a \lor c) \land \qquad (\bar{a} \lor \bar{d} \lor f) \land \qquad \land (\bar{a})$$

- Assume $\bar{b} = \top$, then we have $J = (\bar{b})$
- Are there variables with a forced assignment?

⊳ā

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$F|_{\bar{b}\bar{a}} = (a \lor c) \land \qquad (\bar{a} \lor \bar{d} \lor f) \land \land (\bar{a})$$

- Assume $\bar{b} = \top$, then we have $J = (\bar{b})$
- Are there variables with a forced assignment?

⊳ā

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$F|_{\bar{b}\bar{a}} = (c) \wedge$$

- Assume $\bar{b} = \top$, then we have $J = (\bar{b})$
- Are there variables with a forced assignment?
 - ⊳ā and c̄

$=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	с	d	е	f
Reason	-	-	-	-	-	-

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Steffen Hölldobler and Norbert Manthey SAT Solving – Algorithms

$=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	-	-	-	-	-

add a search decision

 $=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C 1	-	-	-	-

propagate consequences

 $=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C1	-	-	I	-

add a search decision

 $=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C1	-	-	I	-

add a search decision

 $=(\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	с	d	е	f
Reason	-	C 1	-	-	<i>C</i> ₂	-

propagate consequences

propagate consequences

backtrack from conflict and proceed with search

DPLL pseudo code

An iterative solving algorithm

IDPLL (CNF formula F)

Input: A formula *F* in CNF Output: The solution SAT or UNSAT of this formula

J := ()1 while true 2 if $F|_{J} = \emptyset$ then return SAT 3 if $[] \in F |_{\mathcal{I}}$ then 4 if $J = J' \dot{x} J''$ and $\nexists \dot{y} \in J''$ then 5 $J := J'\overline{x}$ 6 continue 7 else return UNSAT 8 if $(x) \in F|_J$ then 9 J := Jx10 continue if $x \in \text{lits}(F|_J)$ and $\overline{x} \notin \text{lits}(F|_J)$ then 12 J := Jx13 continue 14 15 $J := J\dot{x}$ for some $x \in \text{lits}(F|_J)$

// start with empty interpretation // until we find a solution // satisfiability rule // there was a conflict // backtrack and undo most recent decision // add the complement

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

// unsatisfiability rule // unit rule // extend the interpretation

// pure literal rule

// decide rule

Conclusions of the DPLL Algorithm

- Chronological backtracking
- Heavily depends on the order of the decision variables
- How to perform unit propagation? How to find a unit in the formula efficiently?

Unit Propagation

- How to perform unit propagation?
- How to find a unit in the formula efficiently?
- Assumption: we use the presented pseudo code as algorithm.

$F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	с	d	е	f
Reason	-	-	-	-	-	-

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

$F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	-	-	-	I	-

add a search decision

 $F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C 1	-	-	-	-

propagate consequences

 $F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C1	-	-	I	-

add a search decision

 $F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C1	-	-	I	-

add a search decision

 $F = (\overline{a} \lor b) \land (\overline{b} \lor \overline{d} \lor e) \land (c \lor d) \land (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \land (\overline{a} \lor \overline{e} \lor \overline{f}) \land (d \lor \overline{f}) \land (\overline{c} \lor e \lor f)$

Variable	а	b	С	d	е	f
Reason	-	C 1	-	-	<i>C</i> ₂	-

propagate consequences

propagate consequences

create and add the learned clause to the formula

create and add the learned clause to the formula

backtrack, add C₈, and proceed with unit propagation

The CDCL Algorithm

	CDCL (CNF formula F)						
	Input: A formula <i>F</i> in CNF Output: The solution SAT or UNSAT of this formula						
1	J := () while true	// start with empty interpretation					
3 4	while ($m{x}$) $\in m{F} _J$ do $m{J}:=m{J}m{x}$	// unit rule					
5 6	if $[] \in F _J$ then if $\exists \dot{y} \in J$, such that $J = J'J''\dot{y}J'''$ then	// conflict					
7	$F := F \cup C$ with $F \models C$ and $C \notin F$	// learning					
8 9	J := J′ else return UNSAT	// backjumping // unsatisfiability rule					
10 11	else if atoms(J) \supset atoms(F) then return SAT	// no empty clause in F _J // satisfiability rule					
12	else $J := J\dot{z}$ with atoms(z) \subseteq atoms(F)	// decision rule					

Conclusions of the CDCL Algorithm

- Heavily depends on the order of the decision variables
- Non-Chronological backtracking, backjumping
- Learning of new clauses
- No mentioned here: restarts, clause removal
- Question: can the CDCL algorithm simulate the DPLL algorithm?

An Intuitive Abstraction of SAT Solver Techniques

Finding an Exit in a Maze

- Some rules
 - starting point is located in the left column
 - exit is on the right side (if there exists one)
 - search decisions can be done only when moving right
 - when moving left, use backtracking

Property: satisfiable formulas correspond to mazes that can be solved by searching right only

- Heuristics:
 - pick the highest possible column
 - then, pick the lowest column

- Heuristics:
 - pick the highest possible column
 - then, pick the lowest column

- Heuristics:
 - pick the highest possible column
 - then, pick the lowest column

▶ No decision, hence propagate

► No exit (conflict), hence backtrack

▶ No exit in the upper search space, hence backtrack

Do next search decision

Enter the same search space as before

- Choose,
- Propagate,
- and Backtrack after Conflict
- ▶ ... enters the same search space again and again.
- Let's go a few steps back ...

▶ No decision, hence propagate

► No exit (conflict), hence backtrack

... and learn a clause

▶ No exit in upper search space, backtrack and learn

Do next search decision

Does not enter the same search space as before

Motivating Clause Removal

How to perform Unit Propagation

- When is a unit clause in the reduct?
- How to find a unit clause in the reduct, especially in the CDCL algorithm?

Coming Next

Simplification

Parallel Search

