SAT Solving - Algorithms

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden
Germany

- DPLL
- CDCL
- A solving abstraction

TECHNISCHE
UNIVERSITAT
DRESDEN

Warm Up

- Used programming languages

TECHNISCHE
UNIVERSITAT
DRESDEN

Warm Up

- Used programming languages
- Size of implemented projects

TECHNISCHE
UNIVERSITAT

Warm Up

- Used programming languages
- Size of implemented projects
- Parallel computing (multi-core, GPGPU, cluster)

Warm Up

- Used programming languages
- Size of implemented projects
- Parallel computing (multi-core, GPGPU, cluster)
- Interest in computer architecture

TECHNISCHE
UNIVERSITAT
DRESDEN

Revision

- Used Data Types
- Semantics

Formulas and Interpretations

- Let F be a formulas an I be an interpretation
- I can
\triangleright satisfy \boldsymbol{F}, if $\left.\boldsymbol{F}\right|_{\boldsymbol{I}} \equiv \top$
\triangleright falsify \boldsymbol{F}, if $\left.\boldsymbol{F}\right|_{\boldsymbol{I}} \equiv \perp$

Formulas and Interpretations

- Let F be a formulas an I be an interpretation
- I can
\triangleright satisfy \boldsymbol{F}, if $\left.\boldsymbol{F}\right|_{\boldsymbol{I}} \equiv \top$
\triangleright falsify \boldsymbol{F}, if $\left.\boldsymbol{F}\right|_{\boldsymbol{I}} \equiv \perp$
- A formula can be
\triangleright unsatisfiable, $\boldsymbol{F} \equiv \perp$
\triangleright satisfiable
\triangleright tautologic, $F \equiv \top$

Formulas and Interpretations

- Let F be a formulas an I be an interpretation
- I can
\triangleright satisfy F, if $\left.F\right|_{I} \equiv \top$
\triangleright falsify \boldsymbol{F}, if $\left.\boldsymbol{F}\right|_{\boldsymbol{I}} \equiv \perp$
- A formula can be
\triangleright unsatisfiable, $\boldsymbol{F} \equiv \perp$
\triangleright satisfiable
\triangleright tautologic, $F \equiv \top$
- Property: $F \equiv \top$, then $\neg F \equiv \perp$.

Clauses and Conjunctive Normal Forms

- Definition
\triangleright A clause is a generalized disjunction $\left[L_{1}, \ldots, L_{n}\right], n \geq 0$, where every $L_{i}, 1 \leq i \leq n$, is a literal
\triangleright A clause is a unit clause if it contains precisely one literal
\triangleright A clause is a binary clause if it contains precisely two literals

Clauses and Conjunctive Normal Forms

- Definition
\triangleright A clause is a generalized disjunction $\left[L_{1}, \ldots, L_{n}\right], n \geq 0$, where every $L_{i}, 1 \leq i \leq n$, is a literal
\triangleright A clause is a unit clause if it contains precisely one literal
\triangleright A clause is a binary clause if it contains precisely two literals
- Definition
\triangleright A formula is in conjunctive normal form (clause form, CNF) iff it is of the form $\left\langle C_{1}, \ldots, C_{m}\right\rangle, m \geq 0$, and every $C_{j}, 1 \leq j \leq m$, is a clause
- Implementation and working assumptions
\triangleright A clause is an array of literals
- Maintained to be a set of literals (no duplicates)
\rightarrow Clauses are no tautologies (excluded during parsing)
\triangleright A formula is an array of (pointers/references to) clauses
- Maintained to be a multi set

Propositional Resolution

- Remind: clauses are considered to be sets
- Definition Let C_{1} be a clause containing L and C_{2} be a clause containing \bar{L}; The (propositional) resolvent of C_{1} and C_{2} with respect to L is the clause

$$
\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

C is said to be a resolvent of \boldsymbol{C}_{1} and \boldsymbol{C}_{2} iff there exists a literal L such that C is the resolvent of C_{1} and C_{2} wrt L

- Examples when resolving on a
- $(a \vee \neg a) \otimes(\neg a \vee a)=(a \vee \neg a)$
- $(a \vee \neg b) \otimes(\neg a \vee b)=(b \vee \neg b)$
- $(a \vee b) \otimes(\neg a \vee b)=(b)$

Propositional Resolution

- Remind: clauses are considered to be sets
- Definition Let C_{1} be a clause containing L and C_{2} be a clause containing \bar{L}; The (propositional) resolvent of C_{1} and C_{2} with respect to L is the clause

$$
\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

C is said to be a resolvent of \boldsymbol{C}_{1} and \boldsymbol{C}_{2} iff there exists a literal L such that C is the resolvent of C_{1} and C_{2} wrt L

- Examples when resolving on a
- $(a \vee \neg a) \otimes(\neg a \vee a)=(a \vee \neg a)$
- $(a \vee \neg b) \otimes(\neg a \vee b)=(b \vee \neg b)$
- $(a \vee b) \otimes(\neg a \vee b)=(b)$
- Resolvents can subsume antecedents

Propositional Resolution

- Remind: clauses are considered to be sets
- Definition Let C_{1} be a clause containing L and C_{2} be a clause containing \bar{L}; The (propositional) resolvent of C_{1} and C_{2} with respect to L is the clause

$$
\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

C is said to be a resolvent of C_{1} and C_{2} iff there exists a literal L such that C is the resolvent of C_{1} and C_{2} wrt L

- Examples when resolving on a
- $(a \vee \neg a) \otimes(\neg a \vee a)=(a \vee \neg a)$
- $(a \vee \neg b) \otimes(\neg a \vee b)=(b \vee \neg b)$
- $(a \vee b) \otimes(\neg a \vee b)=(b)$
- Resolvents can subsume antecedents
- Usually, resolvents have more literals than antecedents

SAT Solving

SAT Solving - Example

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

$$
F=(a \vee c) \wedge(\bar{b} \vee \bar{e} \vee \bar{f}) \wedge(\bar{a} \vee \bar{d} \vee f) \wedge(\bar{a} \vee \bar{b} \vee \bar{d} \vee e) \wedge(\bar{a} \vee b)
$$

- How to find a solution?
- Some questions:

SAT Solving - Example

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

$$
F=(a \vee c) \wedge(\bar{b} \vee \bar{e} \vee \bar{f}) \wedge(\bar{a} \vee \bar{d} \vee f) \wedge(\bar{a} \vee \bar{b} \vee \bar{d} \vee e) \wedge(\bar{a} \vee b)
$$

- How to find a solution?
- Some questions:

1. How many combinations (solution candidates) exist for 6 Boolean variables?

SAT Solving - Example

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

$$
F=(a \vee c) \wedge(\bar{b} \vee \bar{e} \vee \bar{f}) \wedge(\bar{a} \vee \bar{d} \vee f) \wedge(\bar{a} \vee \bar{b} \vee \bar{d} \vee e) \wedge(\bar{a} \vee b)
$$

- How to find a solution?
- Some questions:

1. How many combinations (solution candidates) exist for 6 Boolean variables?
2. How many percent of the candidates are cut by a unit clause?

SAT Solving - Example

- Given: Conjunction of clauses
- Task: Find satisfying interpretation for variables if possible!

$$
F=(a \vee c) \wedge(\bar{b} \vee \bar{e} \vee \bar{f}) \wedge(\bar{a} \vee \bar{d} \vee f) \wedge(\bar{a} \vee \bar{b} \vee \bar{d} \vee e) \wedge(\bar{a} \vee b)
$$

- How to find a solution?
- Some questions:

1. How many combinations (solution candidates) exist for 6 Boolean variables?
2. How many percent of the candidates are cut by a unit clause?
3. How many percent of the candidates are cut by a binary, ternary, ... clause?

Power of Modern SAT Solvers

- RISs 4.27, SAT Competition 2014, application track
- Formulas with several million clauses and variables can be solved

TECHNISCHE
UNIVERSITAT

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack

TECHNISCHE
UNIVERSITAT

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$
F \quad=(a \vee c) \wedge(\bar{b} \vee \bar{e} \vee \bar{f}) \wedge(\bar{a} \vee \bar{d} \vee f) \wedge(\bar{a} \vee \bar{b} \vee \bar{d} \vee e) \wedge(\bar{a} \vee b)
$$

- Assume $\bar{b}=\top$, then we have $J=(\bar{b})$
- Are there variables with a forced assignment?

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$
\left.F\right|_{\bar{b}}=(a \vee c) \wedge \quad(\bar{a} \vee \bar{d} \vee f) \wedge \quad \wedge(\bar{a})
$$

- Assume $\bar{b}=\top$, then we have $J=(\bar{b})$
- Are there variables with a forced assignment?

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$
\left.F\right|_{\bar{b}}=(a \vee c) \wedge \quad(\bar{a} \vee \bar{d} \vee f) \wedge \quad \wedge(\bar{a})
$$

- Assume $\bar{b}=\top$, then we have $J=(\bar{b})$
- Are there variables with a forced assignment?
$\triangleright \overline{\boldsymbol{a}}$

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$
\left.F\right|_{\bar{b} \bar{a}}=(a \vee c) \wedge \quad(\bar{a} \vee \bar{d} \vee f) \wedge \quad \wedge(\bar{a})
$$

- Assume $\bar{b}=\top$, then we have $J=(\bar{b})$
- Are there variables with a forced assignment?
$\triangleright \overline{\boldsymbol{a}}$

SAT Solving - With Search

- Assume a literal
- Propagate immediate consequences
- If a conflict, backtrack
- Known as DPLL (Davis Putnam Logemann Loveland)
- What are immediate consequences?

$$
\left.F\right|_{\bar{b} \bar{a}}=(\quad c) \wedge
$$

- Assume $\bar{b}=\top$, then we have $J=(\bar{b})$
- Are there variables with a forced assignment?
$\triangleright \overline{\boldsymbol{a}}$ and $\overline{\boldsymbol{c}}$

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	-	-	-	-	-

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	-	-	-	-	-

- add a search decision

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- propagate consequences

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- add a search decision

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- add a search decision

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$

- propagate consequences

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$
found conflict

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	$\boldsymbol{C}_{\mathbf{2}}$	$\boldsymbol{C}_{\mathbf{4}}$

$C_{5}=(\bar{a} \vee \overline{\mathbf{e}} \vee \overline{\mathbf{f}})$

- propagate consequences

Davis Putnam Logemann Loveland (DPLL) in a Nutshell

$=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)$
found conflict

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	\boldsymbol{C}_{1}	-	-	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{C}_{4}

$$
C_{5}=(\overline{\mathbf{a}} \vee \overline{\mathbf{e}} \vee \overline{\mathbf{f}})
$$

- backtrack from conflict and proceed with search

DPLL pseudo code

- An iterative solving algorithm

IDPLL (CNF formula \boldsymbol{F})
Input: A formula F in CNF
Output: The solution SAT or UNSAT of this formula

$J:=()$ while true	// start with empty interpretation // until we find a solution
if $\left.\boldsymbol{F}\right\|_{J}=\emptyset$ then return SAT	// satisfiability rule
if $\left.[] \in F\right\|_{J}$ then	// there was a conflict
if $\boldsymbol{J}=\boldsymbol{J}^{\prime} \dot{\boldsymbol{x}} \boldsymbol{J}^{\prime \prime}$ and $\# \dot{\boldsymbol{y}} \in \boldsymbol{J}^{\prime \prime}$ then	// backtrack and undo most recent decision
$J:=J^{\prime} \bar{x}$ continue	// add the complement
else return UNSAT	// unsatisfiability rule
if $\left.(x) \in F\right\|_{J}$ then	// unit rule
$J:=J x$ continue	// extend the interpretation
if $x \in \operatorname{lits}\left(\left.F\right\|_{J}\right)$ and $\bar{x} \notin \operatorname{lits}\left(\left.F\right\|_{J}\right)$ then $J:=J x$ continue	// pure literal rule
$\boldsymbol{J}:=\boldsymbol{J} \dot{\boldsymbol{x}}$ for some $\boldsymbol{x} \in \operatorname{lits}\left(\left.\boldsymbol{F}\right\|_{J}\right)$	// decide rule

Conclusions of the DPLL Algorithm

- Chronological backtracking
- Heavily depends on the order of the decision variables
- How to perform unit propagation? How to find a unit in the formula efficiently?

TECHNISCHE
UNIVERSITAT
DRESDEN

Unit Propagation

- How to perform unit propagation?
- How to find a unit in the formula efficiently?
- Assumption: we use the presented pseudo code as algorithm.

TECHNISCHE
UNIVERSITAT
DRESDEN

Conflict Driven Clause Learning (CDCL) in a Nutshell

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	-	-	-	-	-

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \overline{\mathbf{e}} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	-	-	-	-	-

- add a search decision

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- propagate consequences

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \overline{\mathbf{e}} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- add a search decision

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \overline{\mathbf{e}} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	-	-

- add a search decision

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	$\boldsymbol{C}_{\mathbf{2}}$	-

- propagate consequences

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	$\boldsymbol{C}_{\mathbf{2}}$	$\boldsymbol{C}_{\mathbf{4}}$

$$
\begin{gathered}
\text { found conflict } \\
\boldsymbol{C}_{5}=(\overline{\mathbf{a}} \vee \overline{\mathbf{e}} \vee \overline{\mathbf{f}})
\end{gathered}
$$

- propagate consequences

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

found conflict
$C_{5}=(\overline{\mathbf{a}} \vee \overline{\mathbf{e}} \vee \overline{\mathrm{f}})$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	$\boldsymbol{C}_{\mathbf{1}}$	-	-	$\boldsymbol{C}_{\mathbf{2}}$	$\boldsymbol{C}_{\mathbf{4}}$

- create and add the learned clause to the formula

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

- create and add the learned clause to the formula

Conflict Driven Clause Learning (CDCL) in a Nutshell

$$
F=(\bar{a} \vee b) \wedge(\bar{b} \vee \bar{d} \vee e) \wedge(c \vee d) \wedge(\bar{a} \vee \bar{b} \vee \bar{e} \vee f) \wedge(\bar{a} \vee \bar{e} \vee \bar{f}) \wedge(d \vee \bar{f}) \wedge(\bar{c} \vee e \vee f)
$$

Variable	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}	\boldsymbol{e}	\boldsymbol{f}
Reason	-	\boldsymbol{C}_{1}	-	-	\boldsymbol{C}_{8}	-

> found conflict
> $\boldsymbol{C}_{5}=(\overline{\mathbf{a}} \vee \overline{\mathbf{e}} \vee \overline{\mathbf{f}})$

- backtrack, add C_{8}, and proceed with unit propagation

The CDCL Algorithm

CDCL (CNF formula \boldsymbol{F})

Input: A formula F in CNF
Output: The solution SAT or UNSAT of this formula

1	$J:=()$	// start with empty interpretation
2	while true	
3	while (x) $\in F^{\prime}$ J do	// unit rule
4	$J:=J x$	
5	if []$\in F \mid$ d then	// conflict
6	if $\exists \dot{\boldsymbol{y}} \in J$, such that $\boldsymbol{J}=J^{\prime} \boldsymbol{J}^{\prime \prime} \dot{\boldsymbol{J}} \boldsymbol{J}^{\prime \prime \prime}$ then	
7	$F:=F \cup C$ with $F \vDash C$ and $\boldsymbol{C} \notin \boldsymbol{F}$	// learning
8	$\boldsymbol{J}:=\boldsymbol{J}^{\prime}$	// backjumping
9	else return UNSAT	// unsatisfiability rule
10	else	// no empty clause in $\left.\boldsymbol{F}\right\|_{J}$
11	if atoms $(J) \supseteq$ atoms (F) then return SAT	// satisfiability rule
12	else $J:=J \bar{z}$ with $\operatorname{atoms}(z) \subseteq \operatorname{atoms}(F)$	// decision rule

Conclusions of the CDCL Algorithm

- Heavily depends on the order of the decision variables
- Non-Chronological backtracking, backjumping
- Learning of new clauses
- No mentioned here: restarts, clause removal
- Question: can the CDCL algorithm simulate the DPLL algorithm?

An Intuitive Abstraction of SAT Solver Techniques

Finding an Exit in a Maze

- Some rules
\triangleright starting point is located in the left column
\triangleright exit is on the right side (if there exists one)
\triangleright search decisions can be done only when moving right
\triangleright when moving left, use backtracking

- Property: satisfiable formulas correspond to mazes that can be solved by searching right only

The DPLL Algorithm

- Heuristics:
\triangleright pick the highest possible column
\triangleright then, pick the lowest column

The DPLL Algorithm

- Heuristics:
\triangleright pick the highest possible column
\triangleright then, pick the lowest column

The DPLL Algorithm

- Heuristics:
\triangleright pick the highest possible column
\triangleright then, pick the lowest column

The DPLL Algorithm

- No decision, hence propagate

The DPLL Algorithm

- No exit (conflict), hence backtrack

The DPLL Algorithm

- No exit in the upper search space, hence backtrack

The DPLL Algorithm

- Do next search decision

The DPLL Algorithm

- Enter the same search space as before

The CDCL Algorithm (conflict driven clause learning)

- Choose,
- Propagate,
- and Backtrack after Conflict
- ...enters the same search space again and again.
- Let's go a few steps back...

The CDCL Algorithm (conflict driven clause learning)

- No decision, hence propagate

The CDCL Algorithm (conflict driven clause learning)

- No exit (conflict), hence backtrack

The CDCL Algorithm (conflict driven clause learning)

- ... and learn a clause

The CDCL Algorithm (conflict driven clause learning)

- No exit in upper search space, backtrack and learn

The CDCL Algorithm (conflict driven clause learning)

- Do next search decision

The CDCL Algorithm (conflict driven clause learning)

- Does not enter the same search space as before

Motivating Clause Removal

How to perform Unit Propagation

- When is a unit clause in the reduct?
- How to find a unit clause in the reduct, especially in the CDCL algorithm?

TECHNISCHE
UNIVERSITAT
DRESDEN

Coming Next

- Simplification
- Parallel Search

