
DATABASE THEORY

Lecture 5: Conjunctive Queries

Markus Krötzsch

TU Dresden, 28 April 2016

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 28 April 2016 Database Theory slide 2 of 31

Review: FO Query Complexity

The evaluation of FO queries is

• PSpace-complete for combined complexity

• PSpace-complete for query complexity

• AC0-complete for data complexity

{ PSpace is rather high
{ Are there relevant query languages that are simpler than that?

Markus Krötzsch, 28 April 2016 Database Theory slide 3 of 31

Conjunctive Queries

Idea: restrict FO queries to conjunctive, positive features

Definition
A conjunctive query (CQ) is an expression of the form

∃y1, . . . , ym.A1 ∧ . . . ∧ A`

where each Ai is an atom of the form R(t1, . . . , tk). In other words, a
conjunctive query is an FO query that only uses conjunctions of
atoms and (outer) existential quantifiers.

Example: “Find all lines that depart from an accessible stop” (as
seen in earlier lectures)

∃ySID, yStop, yTo.Stops(ySID, yStop,"true") ∧ Connect(ySID, yTo, xLine)

Markus Krötzsch, 28 April 2016 Database Theory slide 4 of 31

Conjunctive Queries in Relational Calculus

The expressive power of CQs can also be captured in the relational
calculus

Definition
A conjunctive query (CQ) is a relational algebra expression that
uses only the operations select σn=m, project πa1,...,an , join ./, and
renaming δa1,...,an→b1,...,bn .

Renaming is only relevant in named perspective
{ CQs are also known as SELECT-PROJECT-JOIN queries

Markus Krötzsch, 28 April 2016 Database Theory slide 5 of 31

Extensions of Conjunctive Queries

Two features are often added:

• Equality: CQs with equality can use atoms of the form t1 ≈ t2
(in relational calculus: table constants)

• Unions: unions of conjunctive queries are called UCQs
(in this case the union is only allowed as outermost operator)

Both extensions truly increase expressive power
(as shown in exercise)

Features omitted on purpose: negation and universal quantifiers
{ the reason for this is query complexity (as we shall see)

Markus Krötzsch, 28 April 2016 Database Theory slide 6 of 31

Boolean Conjunctive Queries

A Boolean conjunctive query (BCQ) asks for a mapping from query
variables to domain elements such that all atoms are true

Example: “Is there an accessible stop where some line departs?”

∃ySID, yStop, yTo, yLine.Stops(ySID, yStop,"true")∧Connect(ySID, yTo, yLine)

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Markus Krötzsch, 28 April 2016 Database Theory slide 7 of 31

How Hard is it to Answer CQs?

If we know the variable mappings, it is easy to check:

• Checking if a single ground atom R(c1, . . . , ck) holds can be
done in linear time

• Checking if a conjunction of ground atoms holds can be done
in quadratic time

{ A candidate BCQ match can be verified in P

(There are nm candidates: n size of domain; m number of query variables)

Theorem
BCQ query answering is in NP for combined complexity (and also
for query complexity).

{ Better than PSpace (presumably)

Markus Krötzsch, 28 April 2016 Database Theory slide 8 of 31

Can we do any better?

Not really. To see this, let’s look at some other problems.

Consider two relational structures I and J
(= database instances, interpretations, hypergraphs)

Definition
A homomorphism h from I to J is a function h : ∆I → ∆J such
that, for all relation names R:

if 〈d1, . . . , dn〉 ∈ RI then 〈h(d1), . . . , h(dn)〉 ∈ RJ .

The homomorphism problem is the question if there is a
homomorphism from I to J .

Markus Krötzsch, 28 April 2016 Database Theory slide 9 of 31

Example: Three-colouring as Homomorphism

I : J :

1 2

1 5

1 6

2 3

2 7

3 4

3 8

.

1

2

3

45

6

7

8

910

r g

r b

g r

g b

b r

b g

3-colouring is NP-hard
{ the homomorphism problem is NP-hard

Markus Krötzsch, 28 April 2016 Database Theory slide 10 of 31

BCQ Answering as Homomorphism Problem

The homomorphism problem can be reduced to BCQ answering:

• A relational structure I gives rise to a CQ QI:
replace domain elements by variables (one-to-one); add one
query atom per relational tuple; existentially quantify all variables

• I has a homomorphism to J if and only if J |= QI

BCQ answering can be reduced to the homomorphism problem:

• Clear for BCQs that don’t contain constants

• Eliminate query constants a: create new relation Ra = {〈a〉};
replace a by a fresh variable x and add a query atom Ra(x)

{ both problems are equivalent

Markus Krötzsch, 28 April 2016 Database Theory slide 11 of 31

Complexity of Conjunctive Query Answering

We showed that BCQ answering is in NP and that the
homomorphism problem is NP-hard, therefore:

Theorem
BCQ answering is

• NP-complete for combined complexity

• NP-complete for query complexity

• in AC0 for data complexity (inherited from FO queries)

Markus Krötzsch, 28 April 2016 Database Theory slide 12 of 31

Constraint Satisfaction Problems

Another important problem equivalent to BCQ answering

Definition
A constraint satisfaction problem (CSP) over a domain ∆ is given
by a set of variables {x1, . . . , xn} and a set of constraints
{C1, . . . , Cm}, where each constraint Ci has the form 〈Xi, Ri〉 with

• Xi a list of variables from {x1, . . . , xn},
• Ri a |Xi|-ary relation over ∆.

A solution to the CSP is an assignment of variables to values from
∆ such that all constraints are satisfied (=all tuples occur in the
respective relations).

{ alternative notation for BCQ answering/homomorphism problem

Markus Krötzsch, 28 April 2016 Database Theory slide 13 of 31

CSP Example

A combinatorial crossword puzzle:

Domain: ∆ = {A, . . . , Z}
Variables: x1, . . . , x26

Constraints:

x1 x2 x3 x4 x5 x6

x7 x8 x9 x10

x11 x12 x13 x14 x15

x16 x17 x18 x19

x20 x21 x22 x23 x24 x25 x26

1 vertically:
H E A R T

H O N E Y

I R O N Y

L O G I C

1 horizontally:
H A P P Y

I N F E R

L A B O R

L A T E R

5 vertically:
R A D I O

R E T R O

Y A C H T

Y E R B A

. . .

Markus Krötzsch, 28 April 2016 Database Theory slide 14 of 31

Equivalent Problems

Summing up, the following problems are equivalent:

• Answering a conjunctive query over a database instance

• Finding a homomorphism from a relational structure to another

• Solving a constraint satisfaction problem

Each of these problems is NP-complete

Markus Krötzsch, 28 April 2016 Database Theory slide 15 of 31

Towards Better Complexities

NP-complete problems are still intractable
{ can we do better?

Problem: searching a match may require backtracking, eventually
exploring all options

H A P P Y

O A

N E W C

E A H

Y Y T

Intuition: life would be easier if we would not have to go back so much . . .
{ the problem is with the cycles

Markus Krötzsch, 28 April 2016 Database Theory slide 16 of 31

Example: Cyclic CQs

“Is there a child whose parents are married with each other?”

∃yc, ym, yf .mother(yc, ym) ∧ father(yc, yf) ∧married(ym, yf)

ym

yf

yc

{ cyclic query

Markus Krötzsch, 28 April 2016 Database Theory slide 17 of 31

Example: Acyclic CQs

“Is there a child whose parents are married with someone?”

∃yc, ym, yf , ymm, ymf .mother(yc, ym) ∧ father(yc, yf) ∧
married(ym, ymm) ∧married(ymf , yf)

ymmym

yf

yc

ymf

{ acyclic query

Markus Krötzsch, 28 April 2016 Database Theory slide 18 of 31

Defining Acyclic Queries

Queries in general are hypergraphs
{What does “acyclic” mean?

y1 y2

y4

y6

y5

y3

y1 y2

y4y5

y3

y6

y1 y2

y4

y3

View hypergraphs as graphs to check acyclicity?

• Primal graph: same vertices; edges between each pair of
vertices that occur together in a hyperedge

• Incidence graph: vertices and hyperedges as vertices, with
edges to mark incidence (bipartite graph)

However: both graphs have cycles in almost all cases

Markus Krötzsch, 28 April 2016 Database Theory slide 19 of 31

Acyclic Hypergraphs

GYO-reduction algorithm to check acyclicity:
(after Graham [1979] and Yu & Özsoyoğlu [1979])

Input: hypergraph H = 〈V, E〉 (we don’t need relation labels here)
Output: GYO-reduct of H

Apply the following simplification rules as long as possible:

(1) Delete all vertices that occur in at most one hyperedge

(2) Delete all hyperedges that are empty or that are contained in
other hyperedges

Definition
A hypergraph is acyclic if its GYO-reduct is 〈∅, ∅〉.
A CQ is acyclic if its associated hypergraph is.

Markus Krötzsch, 28 April 2016 Database Theory slide 20 of 31

Example 1: GYO-Reduction

1

2

4

3

7

5

6

2

4

3

7

2

4

3

7

2

4

2

4

Rule (1) Rule (2)

Rule (1) Rule (2)

R
u
le

 (
1

)

R
u
le

 (
2

)

∅

Markus Krötzsch, 28 April 2016 Database Theory slide 21 of 31

Example 2: GYO-Reduction

1

2

4

3

7

5

6

Rule (1) Rule (2)

R
u
le

 (
1

)

2

4

3

7

5

2

4

3

7

5

2

4

7

5

Rule (2)

Rule (1)

Markus Krötzsch, 28 April 2016 Database Theory slide 22 of 31

Alternative Version of GYO-Reduction
An ear of a hypergraph 〈V, E〉 is a hyperedge e ∈ E that satisfies
one of the following:

(1) there is an edge e′ ∈ E such that e , e′ and every vertex of e is
either only in e or also in e′, or

(2) e has no intersection with any other hyperedge.

Example:

4

5
6

7

8
9 1

23

0

{ edges 〈4, 5, 6〉 and 〈7, 8, 9〉 are ears

Markus Krötzsch, 28 April 2016 Database Theory slide 23 of 31

Examples

Any ears?

y1 y2

y4

y6

y5

y3

y1 y2

y4y5

y3

y6

y1 y2

y4

y3

Markus Krötzsch, 28 April 2016 Database Theory slide 24 of 31

GYO’-Reduction

Input: hypergraph H = 〈V, E〉
Output: GYO’-reduct of H

Apply the following simplification rule as long as possible:

• Select an ear e of H

• Delete e

• Delete all vertices that only occurred in e

Theorem
The GYO-reduct is 〈∅, ∅〉 if and only if the GYO’-reduct is 〈∅, ∅〉

{ alternative characterization of acyclic hypergraphs

Markus Krötzsch, 28 April 2016 Database Theory slide 25 of 31

Join Trees

Both GYO algorithms can be implemented in linear time

Open question: what benefit does BCQ acyclicity give us?

Fact: if a BCQ is acyclic, then it has a join tree

Definition
A join tree of a (B)CQ is an arrangement of its query atoms in a
tree structure T, such that for each variable x, the atoms that refer
to x are a connected subtree of T.

A (B)CQ that has a join tree is called a tree query.

Markus Krötzsch, 28 April 2016 Database Theory slide 26 of 31

Example: Join Tree

∃x, y, z, t, u, v, w.
(
r(x, y, z) ∧ r(t, u, y) ∧ s(u, v, y, z) ∧ q(t, w)

)

x

y

u

z

t

v

w r(x,y,z)

s(u,v,y,z)

r(t,u,y)

q(t,w)

sr

rq

Markus Krötzsch, 28 April 2016 Database Theory slide 27 of 31

Processing Join Trees Efficiently

Join trees can be processed in polynomial time

Key ingredient: the semijoin operation

Definition
Given two relations R[U] and S[V], the semijoin RI n SI is defined
as πU(RI ./ SI).

Join trees can now be processed by computing semijoins
bottom-up
{ Yannakakis’ Algorithm

Markus Krötzsch, 28 April 2016 Database Theory slide 28 of 31

Yannakakis’ Algorithm by Example

r(x,y,z)

s(u,v,y,z)

r(t,u,y)

q(t,w)

n

n n

s:

I

2 8 3 5

I

2 4 4 6

I...

3 4 2 3

I

7 1 3 5

8 5 6 4

I

9 2 7 3

r:

...
I

1 2 3

I

3 3 5

I

4 7 3

I

7 9 7

r:

...
I

1 2 3

I...

3 3 5

4 7 3

7 9 7

q:

...
I

2 3

4 5

4 7

6 5

7 2

Markus Krötzsch, 28 April 2016 Database Theory slide 29 of 31

Yannakakis’ Algorithm: Summary

Polynomial time procedure for answering BCQs

Does not immediately compute answers in the version given here
{ modifications needed

Even tree queries can have exponentially many results,
but each can be computed (not just checked) in P

{ output-polynomial computation of results

Markus Krötzsch, 28 April 2016 Database Theory slide 30 of 31

Summary and Outlook

Conjunctive queries (CQs) are an important special case of FO
queries

Boolean CQ answering, the homomorphism problem and
constraint satisfaction problems are equivalent and NP-complete

CQ answering is simpler, namely in P, when CQs are tree queries

• Check acyclicity with GYO algorithm

• Evaluate query using Yannakakis’ Algorithm

Open questions:

• Tree queries are rather special. Are there more general
conditions for good queries?

• What about query optimisation?

Markus Krötzsch, 28 April 2016 Database Theory slide 31 of 31

