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ALC Concepts
ALC is the basic description logic
ALC concepts C are inductively defined from atomic concepts A and roles R:

C ::= ⊤ | ⊥ | A | ¬C | C ⊓D | C ⊔D | ∀R.C | ∃R.C

Semantics given through DL interpretations I = ⟨ΔI , ·I⟩ with
⊤I = Δ

I

⊥I = ∅
(¬C)I = Δ

I \ CI

(C ⊓D)I = C
I ∩D

I

(C ⊔D)I = C
I ∪D

I

(∃R.C)I = {u ∈ Δ
I | ∃w ∈ Δ

I s.t. ⟨u,w⟩ ∈ R
I and w ∈ C

I}
(∀R.C)I = {u ∈ Δ

I | ∀w ∈ Δ
I , ⟨u,w⟩ ∈ R

I implies w ∈ C
I}
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ALC Fragments
What happens to ALC if we disallow negation? That is, if we define “ALC+”via

C ::= ⊤ | ⊥ | A | C ⊓D | C ⊔D | ∀R.C | ∃R.C

Not much:Instead of ¬C, we can use AC for a new concept name AC and add the GCIs
⊤ ⊑ C ⊔ AC

C ⊓ AC ⊑ ⊥

What happens if we disallow negation, disjunction, and value restriction?A lot – complexity (of concept satisfiability) drops from PSpace to PTime.
It is an important objective of DL (indeed KR) research to identify logicalfragments that are “computationally well-behaved”.
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Basic Reasoning Problems and Services
What kinds of reasoning problems and services might be interesting?
Scenario: Ontology design
• We are building a conceptual model (a TBox) for our domain
• At this design stage we haven’t yet included the data (no ABox)
Our TBox should be
• Error-free:

No unintended logical consequences
• Sufficiently detailed:

Contain all relevant knowledge for our application
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Ontology Design
JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis ⊑ ∃Damages. Joint ⊓ ∀Damages. Joint ⊓ ∃Affects. Adult
JuvDisease ⊑ Disease⊓ ∀Affects.(Child ⊔ Teen)

Disease⊓ ∃Damages. Joint ⊑ JointDisease

Child ⊔ Teen ⊑ ¬Adult

This TBox contains modeling errors:
Juvenile arthritis is a kind of juvenile disease

Juvenile disease affects only children or teens, which are not adults
A juvenile arthritis cannot affect any adult

Juvenile arthritis is a kind of arthitis
Each arthritis affects some adult

Each juvenile arthritis affects some adult
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Concept Satisfiability
What is the impact of the error?

All models I of T must be such that JuvArthritisI = ∅
A juvenile arthritis cannot exist!

We cannot add data concerning juvenile arthritis
Such errors can be detected by solving the following problem:

Concept satisfiability w.r.t. a TBox:Input: a pair ⟨C,T⟩ with C a concept and T a TBox.Answer: true iff a model I |= T exists such that CI ̸= ∅, false otherwise.
In a FOL setting, C is satisfiable w.r.t. T if and only if

π(T)∧ ∃x.(πx(C)) is satisfiable
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Concept Subsumption
Parts of our arthritis TBox, however, do conform to our intuitions:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

Arthritis ⊑ ∃Damages. Joint ⊓ ∀Damages. Joint ⊓ ∃Affects. Adult
JuvDisease ⊑ Disease⊓ ∀Affects.(Child ⊔ Teen)

Disease⊓ ∃Damages. Joint ⊑ JointDisease

Child ⊔ Teen ⊑ ¬Adult

Juvenile arthritis is a kind of juvenile diseaseJuvenile disease is a kind of diseaseJuvenile arthritis is a kind of diseaseJuvenile arthritis is a kind of arthitisEach arthritis damages some jointEach juvenile arthritis damages some joint
Juvenile arthritis is a joint disease.
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Concept Subsumption
We have discovered new interesting information

All models I of T must be such that JuvArthritisI ⊆ JointDiseaseI

Juvenile arthritis is a sub-type of joint disease
All instances of juvenile arthitis are also joint diseases

Such implicit information is detectable by solving the following problem:
Concept subsumption w.r.t. a TBox:Input: a triple ⟨C,D,T⟩ with C,D concepts, T a TBox.Answer: true iff CI ⊆ DI for each I |= T (written T |= C ⊑ D).

In a FOL setting, C is subsumed by D w.r.t. T if and only if
π(T) |= ∀x.(πx(C) → πx(D))
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TBox Classification
Problem of finding all subsumptions between atomic concepts in T.
Allows us to organise atomic concepts in a subsumption hierarchy:

⊤

Disease Joint Person

JuvDis JointDis

Arthritis

JuvArthritis

Child Teen Adult

⊥
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Knowledge Base Reasoning
TBox:

JuvArthritis ⊑ Arthritis⊓ JuvDisease

JuvDisease ⊑ Disease

Arthritis ⊑ ∃Damages. Joint ⊓ ∀Damages. Joint
JuvDisease ⊑ ∀Affects.(Child ⊔ Teen)

Child ⊔ Teen ⊑ ¬Adult
Disease⊓ ∃Damages. Joint ⊑ JointDisease

ABox:
JuvArthritis( JRA)

Affects( JRA,MaryJones)
Disease(D)

Joint( J)
Damages(D, J)

¬Teen(MaryJones)
May want to answer questions about individuals and/or KB as a whole:• Is KB (TBox + ABox) consistent, i.e., does there exist a model?– What if we add ¬JointDisease( JRA)?• Can we infer additional information about individuals?– Is D an instance of any class other than Disease?– Do we know if MaryJones is an Adult or a Child?
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Summary of Basic Reasoning Problems
Definition
Let K = (T,A) be an ALC knowledge base, C, D possibly compound ALCconcepts, and b an individual name. We say that
1. C is satisfiable with respect to T if there exists a model I of T and some

d ∈ ΔI with d ∈ CI ;
2. C is subsumed by D with respect to T, written T |= C ⊑ D, if CI ⊆ DI forevery model I of T;
3. C and D are equivalent with respect to T, written T |= C ≡ D, if CI = DI forevery model I of T;
4. K is consistent if there exists a model of K;
5. b is an instance of C with respect to K, written K |= b :C, if bI ∈ CI forevery model I of K.
We write C ⊑T D for T |= C ⊑ D and C ≡T D for T |= C ≡ D.

Description Logics – Syntax and Semantics II (Lecture 5)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2023/24 Slide 11 of 30 Computational
Logic ∴ Group



Important Properties of Subsumption

Lemma
Let C, D and E be concepts, b an individual name, and (T,A), (T ′,A′)knowledge bases with T ⊆ T ′ and A ⊆ A′.
1. C ⊑T C.
2. If C ⊑T D and D ⊑T E, then C ⊑T E.
3. If b is an instance of C with respect to (T,A) and C ⊑T D, then b is aninstance of D with respect to (T,A).
4. If T |= C ⊑ D then T ′ |= C ⊑ D.
5. If T |= C ≡ D then T ′ |= C ≡ D.
6. If (T,A) |= b : E then (T ′,A′) |= b : E.
Proofs follow easily from semantics

Description Logics – Syntax and Semantics II (Lecture 5)Computational Logic Group // Sebastian RudolphFoundations of Knowledge Representation, WS 2023/24 Slide 12 of 30 Computational
Logic ∴ Group



Reasoning Problem Reductions

Theorem
Let K = (T,A) be an ALC knowledge base, C, D possibly compound ALCconcepts and b an individual name.
1. C ≡T D if and only if C ⊑T D and D ⊑T C.
2. C ⊑T D if and only if C ⊓ ¬D is not satisfiable with respect to T.
3. C is satisfiable with respect to T if and only if C ̸⊑T ⊥.
4. C is satisfiable with respect to T if and only if (T, {b :C}) is consistent.
5. (T,A) |= b :C if and only if (T,A∪ {b :¬C}) is not consistent.
Consequently, all the previously mentioned reasoning problems can bereduced to KB (in)consistency.
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Basic Reasoning Services
Correspond one-to-one with basic reasoning problems:
1. Given a TBox T and a concept C, check whether C is satisfiable withrespect to T.2. Given a TBox T and two concepts C and D, check whether C is subsumed

by D with respect to T.3. Given a TBox T and two concepts C and D, check whether C and D are
equivalent with respect to T.4. Given a knowledge base (T,A), check whether (T,A) is consistent.5. Given a knowledge base (T,A), an individual name a, and a concept C,check whether a is an instance of C w.r.t. (T,A).

All can be realised via KB consistency checks, e.g.:
(T,A) |= C ⊑ D iff

(T,A∪ {a : (C ⊓ ¬D)})

is not consistent
for a an individual name not occurring in A.
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Additional Reasoning Services
We can define additional reasoning services in terms of basic ones:
• Classification of a TBox: given a TBox T, compute the subsumption

hierarchy of all concept names occurring in T.That is, for each pair A,B of concept names occurring in T, check if
T |= A ⊑ B and if T |= B ⊑ A.• Checking the satisfiability of concepts in T: given a TBox T, for eachconcept name A in T, test if T ̸|= A ⊑ ⊥.• Instance retrieval: given a concept C and a knowledge base K, return allthose individual names b such that b is an instance of C with respect to K.That is, for each individual name b occurring in K, check if T |= b :C.• Realisation of an individual name: given an individual name b and aknowledge base K, return all those concept names A such that b is aninstance of A with respect to K. That is, for each concept name Aoccurring in K, check if T |= b : A.
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Extensions: Inverse Roles
We might imagine that adding:

Adult( JohnSmith) AffectedBy( JohnSmith, JRA)
would lead to an inconsistency.
However, this is not the case, because there is no semantic relationshipbetween Affects and AffectedBy.
In order to relate roles such as Affects and AffectedBy in the desired way,DLs can be extended with inverse roles.
The fact that a DL provides inverse roles is normally indicated by the letter Iin its name, e.g., ALCI.
We will use L as a placeholder for the name of a DL and write LI for Lextended with inverse roles.
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Extensions: Inverse Roles
Definition
Let R be the set of role names. For R ∈ R, R– is an inverse role. The set of
I roles is R∪ {R– | R ∈ R}.
Let L be a description logic. The set of LI concepts is the smallest set ofconcepts that contains all L concepts and where I roles can occur in allplaces of role names.
An interpretation Imaps inverse roles to binary relations as follows:

(r–)I = {( y, x) | (x, y) ∈ r
I}

Typically, DLs supporting inverse roles also allow for inverse roles to beused in axioms such as the following:
AffectedBy ≡ Affects

–
which establishes the intuitive semantic relationship.
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Extensions: Number Restrictions
We might want to state that MildArthritis Affects at most 2 Joints, or that
SevereArthritis Affects at least 5 Joints.
In order to support this, DLs can be extended with (qualified) numberrestrictions, usually indicated by N for NRs and Q for QNRs.
NRs are concept descriptions whose instances are related to at least/most nother individuals via a given role; e.g., (⩽2 sister) describes individuals havingat most 2 sisters.
QNRs additionally allow for restricting the type of the target individuals; e.g.,(⩾2 sister.Graduate) describes individuals having at least 2 sisters who aregraduates.
Note that an NR is equivalent to a QNR where the restriction concept is ⊤;e.g., (⩽2 sister) is equivalent to (⩽2 sister.⊤).
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Extensions: Number Restrictions
Definition
For n a non-negative number, r an L role and C a (possibly compound)
L concept description, a number restriction is a concept description of theform (⩽n r) or (⩾n r), and a qualified number restriction is a conceptdescription of the form (⩽n r.C) or (⩾n r.C), where C is the qualifying concept.
For an interpretation I, its mapping ·I is extended as follows, where #M isused to denote the cardinality of a set M:

(⩽n r)I = {d ∈ Δ
I | #{e | (d, e) ∈ r

I} ≤ n},
(⩾n r)I = {d ∈ Δ

I | #{e | (d, e) ∈ r
I} ≥ n},

(⩽n r.C)I = {d ∈ Δ
I | #{e | (d, e) ∈ r

I and e ∈ C
I} ≤ n},

(⩾n r.C)I = {d ∈ Δ
I | #{e | (d, e) ∈ r

I and e ∈ C
I} ≥ n}.

We let (=nr) and (=n r.C) abbreviate (⩽n r)⊓ (⩾n r) resp. (⩽n r.C)⊓ (⩾n r.C).
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Extensions: Nominals
So far our use of individuals has been restricted to ABox axioms.
We may also want to use individuals in concept descriptions; e.g., todescribe those individuals who are affected by some Disease that alsoaffects the individual JohnSmith.
Intuitively, we might try the description

∃Affects–.(Disease⊓ ∃Affects. JohnSmith)
but this will not work, because in this context JohnSmithmust be a concept.†
Nominals allow for the construction of a concept from an individual name;e.g.: { JohnSmith} is the concept whose only instance is JohnSmith.
The fact that a DL provides nominals is normally indicated by the letter O inits name (N is already used for unqualified number restrictions).
† In fact this would be a syntax error if we use JohnSmith elsewhere as an individual (the set C of concept names and I of individual namesmust be disjoint).
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Extensions: Nominals
Definition
Let I be the set of individual names. For b ∈ I, {b} is called a nominal.
Let L be a description logic. The description logic LO is obtained from L byallowing nominals as additional concepts.
For an interpretation I, its mapping ·I is extended as follows:

({a})I = {aI}

• We can now form the desired concept description:
∃Affects–.(Disease⊓ ∃Affects.{ JohnSmith})

• With nominals, the separation between ABox and TBox is less meaningful:
C(a) ≡ {a} ⊑ C

R(a,b) ≡ {a} ⊑ ∃R.{b}
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Extensions: Role Hierarchies
We may want our KB to provide some structure for roles as well asconcepts; e.g.: we may want to state that roles brother and sister aresubsumed by the role sibling.
The fact that a DL provides such role inclusion axioms (RIAs) is normallyindicated by the letterH in its name (there is aHierarchy of roles).
Definition
A role inclusion axiom (RIA) is an axiom of the form r ⊑ s for r, s L roles.
The DL LH is obtained from L by allowing, additionally, role inclusionaxioms in TBoxes.
For an interpretation I to be amodel of a role inclusion axiom r ⊑ s, it has tosatisfy

r
I ⊆ s

I
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Extensions: Transitive Roles
We can use the role parent to form descriptions such as:

∃parent.Irish having an Irish parent
∃parent.(∃parent.Irish) having an Irish grandparent

∃parent.(∃parent.(∃parent.Irish)) having an Irish greatgrandparent
But what if we want to mention Irish ancestors without specifying ageneration?
We can do that by using a combination of role hierarchy and transitive roles:

parent ⊑ ancestor parent is a sub-role of ancestor
Trans(ancestor) ancestor is a transitive role
∃ancestor.Irish having an Irish ancestor
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Extensions: Transitive Roles
Definition
A role transitivity axiom is an axiom of the form Trans(r) for r an L role.
The name of the DL that is the extension of L by allowing, additionally,transitivity axioms in TBoxes, is usually given by replacing ALC in L’s namewith S.
For an interpretation I to be a model of a role transitivity axiom Trans(r), therelation rI must be transitive.
• The use of S to replace ALC in DLs with transitive roles is inspired bysimilarities with the modal logic S4 (and a desire for shorter names).
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Extensions: Transitive Roles
It is important to understand the difference between transitive roles and thetransitive closure of roles.
• Transitive closure is a role constructor: given a role r, transitive closurecan be used to construct a role r+, with the semantics being that(r+)I = (rI )+.
• In a logic that includes both transitive roles and role inclusion axioms,e.g., SH, adding axioms Trans(s) and r ⊑ s to a TBox T ensures that inevery model I of T, sI is transitive, and rI ⊆ sI .
• However, we cannot enforce that s is the smallest such transitive role:

s is just some transitive role that includes r.
• In contrast, the transitive closure r+ of r is, by definition, the smallesttransitive role that includes r; thus we have:

{Trans(s), r ⊑ s} |= r ⊑ r
+ ⊑ s.
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Relationships to FOL Revisited
As we have seen, ALC is in the 2-variable fragment of FOL (FO2):

πx(A) = A(x) πy(A) = A(y)
πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)

πx(C ⊓D) = πx(C)∧ πx(D) πy(C ⊓D) = πy(C)∧ πy(D)
πx(C ⊔D) = πx(C)∨ πx(D) πy(C ⊔D) = πy(C)∨ πy(D)

πx(∃R.C) = ∃y.(R(x, y)∧ πy(C)) πy(∃R.C) = ∃x.(R( y, x)∧ πx(C))
πx(∀R.C) = ∀y.(R(x, y) → πy(C)) πy(∀R.C) = ∀x.(R( y, x) → πx(C))

π(C ⊑ D) = ∀x.(πx(C) → πx(D)) π(R(a,b)) = R(a,b) π(C(a)) = πx/a(C)
FO2 satisfiability is known to be decidable in NExpTime.Moreover, the translation uses quantification only in a restricted way, andtherefore yields formulas in the guarded fragment for which satisfiability isknown to be decidable in deterministic exponential time.
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Relationships to FOL Revisited
• Inverse roles can be captured easily in both the guarded and thetwo-variable fragments by simply swapping the variable places;e.g., πx(∃r–.C) = ∃y.(r( y, x)∧ πy(C)).
• Number restrictions can be captured using (in)equality or so-called

counting quantifiers; e.g., πx(⩽2 r.C) = ∃≤2y.(r(x, y)∧ πy(C)).
• It is known that the two-variable fragment with counting quantifiers (C2)is still decidable in nondeterministic exponential time.
• Nominals can be captured using equality; e.g., πx({a}) = (x = a).
• RIAs can also be captured in FO2; e.g., π(r ⊑ s) = ∀x, y.(r(x, y) → s(x, y)).
• Transitive roles require three variables, and FO3 is known to beundecidable; however, a satisfiability preserving transformation into FO2

is still possible.
• This gives us a nondeterministic exponential time upper bound for

SHOIQ satisfiability.
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Relationships to Modal Logic
It is not hard to see that ALC concepts can be viewed as syntactic variants offormulae of multi-modal K(m):• Kripke structures can easily be viewed as DL interpretations, and viceversa;• we can then view concept names as propositional variables, and rolenames as modal operators;• we can realise this correspondence through the mapping π as follows:

π(A) = A for concept names A
π(C ⊓D) = π(C)∧ π(D)
π(C ⊔D) = π(C)∨ π(D)
π(¬C) = ¬π(C)

π(∀r.C) = [r]π(C)
π(∃r.C) = ⟨r⟩π(C)
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Complexity
Undecidable

Non-Elementary decidable
. . .

NExpTime
ExpTime
PSpace
NP
P

FOL-3 sat
. . .
. . .

FOL-2, SHOIQ sat
Datalog, SHOI sat

ALC sat
PL sat

Horn PL sat
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Conclusion

• For description logic knowledge bases, there are various relevantreasoning problems.
• All can be reduced to knowledge base (in)consistency.
• The basic description logic ALC can be extended in various ways:

– Inverse Roles I– (Qualified) Number Restrictions (Q) N– Nominals O– Role Hierarchies H– Transitive Roles ALC⇝ S

• Description Logics have close connections with propositional modal logic . . .
• . . . and with the two-variable fragments of first-order logic (with countingquantifiers)
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