
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 9: First-Order Expressiveness /
Introduction to Datalog

Markus Krötzsch

TU Dresden, 15 June 2015

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Implementation techniques for Datalog
12. Path queries
13. Constraints
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 2 of 31

Review: EF Games

Ehrenfeucht-Fraïssé games characterise expressivity of FO formulas:

• the quantifier rank needed to distinguish structure
corresponds to

• the number of rounds needed by Spoiler to win the game

Spoiler Duplicator

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 3 of 31

Using EF Games to Show FO-Undefinability

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of databases I1,I2,I3, . . . ∈ CM and
databases J1,J2,J3, . . . < CM, such that Ii ∼i Ji

{ for any formula ϕ (however large its quantifier rank r), there is a
counterexample Ir ∈ CM and Jr < CM that ϕ cannot distinguish

Problems:

• How to find such sequences of Ii and Ji?
{ No general strategy exists

• Given suitable sequences, how to show that Ii ∼i Ji?
{ Can be difficult, but doable for some special cases

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 4 of 31

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition
A structure I is a linear order if it has a single binary predicate ≤
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6
L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7

Spoiler can win the 3-round EF game:

Spoiler plays 4 in L7
Duplicator plays 4 in L6: Spoiler plays 6 in L7

Duplicator plays 5 in L6: Spoiler plays 5 in L7 and wins
Duplicator plays 6 in L6: Spoiler plays 7 in L7 and wins

Duplicator plays 3 in L6: symmetric game (flipped horizontally)

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 5 of 31

Expressiveness on Linear Orders

Let’s look at some very simple structures:

Definition
A structure I is a linear order if it has a single binary predicate ≤
interpreted as a total, transitive, reflexive and asymmetric relation.

Example:
L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7
L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

Spoiler cannot win the 3-round EF game:

Spoiler plays 4 in L8: Duplicator plays 4 in L7
Spoiler plays 6 in L8: Duplicator plays 6 in L7; spoiler cannot win
Spoiler plays 7 in L8: Duplicator plays 6 in L7; spoiler cannot win

Other cases similar: Spoiler never wins

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 6 of 31

EF Games and Linear Orders

Theorem
The following are equivalent:

• Lm ∼r Ln

• either (1) m = n, or (2) m ≥ 2r − 1 and n ≥ 2r − 1

Proof: see board

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 7 of 31

FO-Definability of Parity

Theorem
Parity is not FO-definable for linear orders, hence it is not
FO-definable for arbitrary databases.

Proof:

• Suppose for a contradiction that Parity is FO-definable by
some query ϕ.

• Let r be the quantifier rank of ϕ.

• Consider databases Lm and Ln with m = 2r and n = 2r + 1.

• We know that Lm ∼r Ln, and therefore Lm ≡r Ln.

• Hence, Lm |= ϕ if and only if Ln |= ϕ.

• But Lm ∈ Parity while Ln < Parity.

• Therefore, ϕ does not FO-define Parity. Contradiction.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 8 of 31

FO-Definability of Connectivity

The Connectivity problem over finite graphs is as follows:
• Input: A finite graph (relational structure with one binary

relation “edge”)
• Output: “true” if there is an (undirected) path between any pair

of vertices

Theorem
Connectivity is not FO-definable.

Proof:
• Suppose for a contradiction that Connectivity is

FO-definable using a query ϕ.
• We show that this would make Parity FO-definable on linear

orders.
• For a linear order L with order predicate ≤, we define a finite

graph G(L) over a binary predicate “edge” such that G(L) is
connected if and only if L has an even number of elements.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 9 of 31

Defining a Graph From a Linear Order

We use abbreviations for the following FO formulas:

succ[x, y] = (x ≤ y) ∧ ¬(y ≤ x) ∧ y is the successor of x

∀z.(z ≤ x ∨ y ≤ z)

min[x] = ∀z.x ≤ z x is the first element

max[x] = ∀z.z ≤ x x is the last element

succ◦[x, y] = succ[x, y] ∨ (max[x] ∧min[y]) circular version of succ

We now define the formula ψ that derives edges from a linear order:

∀x, y.edge(x, y)↔ ∃z.succ◦[x, z] ∧ succ◦[z, y]

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 10 of 31

Illustration: Graphs From Linear Orders

1 2 3 4 5

61 2 3 4 5

1
2

3

4

5

6

1

2

3

4

5

1

2

3

4

5

1
3

5 6

2

4

edge

succ

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 11 of 31

Completing the Proof

Observation:
The graph G(L) is connected if and only if L has odd parity.

Therefore, if ϕ FO-defines Connectivity on graphs with
predicate edge, then ¬(ϕ ∧ ψ) FO-defines Parity on linear orders.

Since Parity is not FO-definable, no such ϕ can exist.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 12 of 31

Beyond Linear Orders: Locality

Intuition: Duplicator can win an EF game if selected nodes have
the same “neighbourhood”
{ let’s define this for graphs (structures with binary predicates)

Definition
Consider a graph G. For a natural number d ≥ 0 and a vertex v, the
d-neighbourhood of v, N(v, d), is defined inductively:

• N(v, 0) = {v}
• N(v, d + 1) = N(v, d) ∪

{w | w is a direct neighbour of some w′ ∈ N(v, d)}
Two vertices v and w have the same d-type if the subgraphs G|N(v,d)

and G|N(w,d) are isomorphic.
Two graphs are d-equivalent if, for every d-type, they have the
same number of d-neighbourhoods of this type.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 13 of 31

Locality and FO-definability

A special case of Gaifman’s Locality Theorem of first-order logic:

Theorem
For every integer r ≥ 1:

• if G1 is 3r−1-equivalent to G2

• then G1 ∼r G2, and thus G1 ≡r G2

{ Intuition: FO can only express local properties

How to show that a query mapping M can not be FO-defined:

• Let CM be the class of all databases recognised by M

• Find sequences of graphs I1,I2,I3, . . . ∈ CM and graphs
J1,J2,J3, . . . < CM, such that Ii is i-equivalent to Ji

{ for any formula ϕ (however large its quantifier rank r), there is a
counterexample I3r−1 ∈ CM and J3r−1 < CM that ϕ cannot distinguish
Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 14 of 31

Connectivity is not FO-definable (Proof 2)

Theorem
Connectivity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2(d + 1)4(d + 1) 2(d + 1)

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 15 of 31

2-Colourability

Theorem
2-Colourability is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r (odd number)

Id Jd

3d6d 3d

• the only d-type is a path of 2d + 1 nodes

• Id and Jd are d-equivalent

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 16 of 31

Acyclicity

Theorem
Acyclicity is not FO-definable.

Proof: counterexample for quantifier rank r: set d = 3r

Id Jd

2d + 24d + 2 2d

• d-types are paths of ≤ 2d + 1 nodes
• Id and Jd are d-equivalent

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 17 of 31

Summary: Limits of FO-Queries
FO queries (and hence Relational Calculus) cannot express
properties that require a “global” view:

• properties where one needs to follow paths
• properties where one needs to count elements

Remember Lecture 1?

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

What about all stops reachable from Helmholtzstr.?

{ Not expressible in Relational Calculus

Yet, all examples we saw are in P

{ Is there another query language that could help us?
Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 18 of 31

Introduction to Datalog

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 19 of 31

Introduction to Datalog
Datalog introduces recursion into database queries
• Use deterministic rules to derive new information from given facts
• Inspired by logic programming (Prolog)
• However, no function symbols and no negation
• Studied in AI (knowledge representation) and

in databases (query language)

Example: transitive closure C of a binary relation r

C(x, y)← r(x, y)

C(x, z)← C(x, y) ∧ r(y, z)

Intuition:
• some facts of the form r(x, y) are given as input, and the rules

derive new conclusions C(x, y)
• variables range over all possible values (implicit universal

quantifier)
Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 20 of 31

Syntax of Datalog

Recall: A term is a constant or a variable. An atom is a formula of
the form R(t1, . . . , tn) with R a predicate symbol (or relation) of arity
n, and t1, . . . , tn terms.

Definition
A Datalog rule is an expression of the form:

H ← B1 ∧ . . . ∧ Bm

where H and B1, . . . , Bm are atoms. H is called the head or
conclusion; B1 ∧ . . . ∧ Bm is called the body or premise. A rule with
empty body (m = 0) is called a fact. A ground rule is one without
variables (i.e., all terms are constants).

A set of Datalog rules is a Datalog program.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 21 of 31

Datalog: Example

father(alice, bob)

mother(alice, carla)

mother(evan, carla)

father(carla, david)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

Ancestor(x, y)← Parent(x, y)

Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 22 of 31

Datalog Semantics by Deduction

What does a Datalog program express?
Usually we are interested in entailed ground atoms

What can be entailed? Informally:

• Restrict to set of constants that occur in program (finite)
{ universeU

• Variables can represent arbitrary constants from this set
{ ground substitutions map variables to constants

• A rule can be applied if its body is satisfied for some ground
substitution
Example: rule Parent(x, y)← mother(x, y) can be applied to
mother(alice, carla) under substitution {x 7→ alice, y 7→ carla}

• If a rule is applicable under some ground substitution, then
the according instance of the rule head is entailed.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 23 of 31

Datalog Semantics by Deduction (2)

An inductive definition of what can be derived:

Definition
Consider a Datalog program P. The set of ground atoms that can
be derived from P is the smallest set of atoms A for which there is a
rule H ← B1 ∧ . . . ∧ Bn and a ground substitution θ such that

• A = Hθ, and

• for each i ∈ {1, . . . , n}, Biθ can be derived from P.

Notes:

• n = 0 for ground facts, so they can always be derived
(induction base)

• if variables in the head do not occur in the body, they can be
any constant from the universe

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 24 of 31

Datalog Deductions as Proof Trees

We can think of deductions as tree structures:

Ancestor(alice, david)

Parent(alice, carla) Ancestor(carla, david)

Parent(carla, david)

father(carla, david)

mother(alice, carla)

(8)
{x 7→ alice, y 7→ carla, z 7→ david}

(6)
{x 7→ alice, y 7→ carla}

(7)
{x 7→ carla, y 7→ david}

(5)
{x 7→ carla, y 7→ david}

(2)

(4)

(1) father(alice, bob)

(2) mother(alice, carla)

(3) mother(evan, carla)

(4) father(carla, david)

(5) Parent(x, y)← father(x, y)

(6) Parent(x, y)← mother(x, y)

(7) Ancestor(x, y)← Parent(x, y)

(8) Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 25 of 31

Datalog Semantics by Least Fixed Point

Instead of using substitutions, we can also ground programs:

Definition
The grounding ground(P) of a Datalog program P is the set of all
ground rules that can be obtained from rules in P by uniformly
replacing variables with constants from the universe.

Derivations are described by the immediate consequence operator
TP that maps sets of ground facts I to sets of ground facts TP(I):

• TP(I) = {H | H ← B1 ∧ . . . ∧ Bn ∈ ground(P) and B1, . . . , Bn ∈ I}
• Least fixed point of TP: smallest set L such that TP(L) = L

• Bottom-up computation: T0
P = ∅ and T i+1

P = TP(T i
P)

• The least fixed point of TP is T∞P =
⋃

i≥0 T i
P (exercise)

Observation: Ground atom A is derived from P if and only if A ∈ T∞P

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 26 of 31

Datalog Semantics by Least Model

We can also read Datalog rules as universally quantified
implications

Example: Ancestor(x, z)← Parent(x, y) ∧ Ancestor(y, z)
corresponds to implication

∀x, y, z.Parent(x, y) ∧ Ancestor(y, z)→ Ancestor(x, z).

A set of FO implications may have many models
{ consider least model over the domain defined by the universe

Theorem
A fact is entailed by the least model of a Datalog program if and
only if it can be derived from the Datalog program.

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 27 of 31

Datalog Semantics: Overview

There three equivalent ways of defining Datalog semantics:

• Proof-theoretic: What can be proven deductively?

• Operational: What can be computed bottom up?

• Model-theoretic: What is true in the least model?

In each case, we restrict to the universe of given constants.
{ similar to active domain semantics in databases

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 28 of 31

Datalog as a Query Language

How can we use Datalog to query databases?
{ View database as set of ground facts
{ Specify which predicate yields the query result

Definition
A Datalog query is a pair 〈R, P〉, where P is a Datalog program and
R is the answer predicate.
Results of the query: R-facts entailed by P

Datalog queries distinguish “given” relations from “derived” ones:

• predicates that occur in a head of P are
intensional database (IDB) predicates

• predicates that only occur in bodies are
extensional database (EDB) predicates

Requirement: database relations used as EDB predicates only

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 29 of 31

Datalog as a Generalisation of CQs

A conjunctive query ∃y1, . . . , ym.A1 ∧ . . . ∧ A` with answer variables
x1, . . . , xn can be expressed as a Datalog query 〈Ans, P〉 where P
has the single rule:

Ans(x1, . . . , xn)← A1 ∧ . . . ∧ A`

Unions of CQs can also be expressed (exercise)

Intuition: Datalog generalises UCQs with recursion

Open questions:

• How hard is it to answer Datalog queries?

• Can Datalog express all queries in P?

• What about query containment and equivalence?

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 30 of 31

Summary and Outlook

FO-queries can only express “local” properties

Possible proof techniques:

• Ehrenfeucht-Fraïssé Games

• Locality Theorems

• For more approaches see
Chapter 17 of [Abiteboul, Hull, Vianu 1994]

Datalog can overcome some of these limitations

Next topics:

• Complexity and expressive power of Datalog

• Implementation techniques for Datalog

Markus Krötzsch, 15 June 2015 Foundations of Databases and Query Languages slide 31 of 31

