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Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
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Review

Conjunctive queries (CQs) are simpler than FO-queries:

• NP combined and query complexity (instead of PSpace)

• data complexity remains in AC0

CQs become even simpler if they are tree-shaped:

• GYO algorithm defines acyclic hypergraphs

• acyclic hypergraphs have join trees

• join trees can be evaluated in P with Yannakakis’ Algorithm

This time:

• Find more general conditions that make CQs tractable
{ “tree-like” queries that that are not really trees

• Play some games
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Is Yannakakis’ Algorithm Optimal?
We saw that tree queries can be evaluated in polynomial time,
but we know that there are much simpler complexity classes:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

Indeed, tighter bounds have been shown:

Theorem (Gottlob, Leone, Scarcello: J. ACM 2001)
Answering tree BCQs is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word
problem of a context-free language:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

{ highly parallelisable
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Generalising Tree Queries

In practice, many queries are tree queries,
but even more queries are “almost” tree queries, but not quite . . .

How can we formalise this idea?

Several attempts to define “tree-like” queries:

• Treewidth: a way to measure tree-likeness of graphs

• Query width: towards tree-like query graphs

• Hypertree width: adoption of treewidth to hypergraphs
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How to recognise trees . . .

. . . from quite a long way away:
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Tree Decompositions
Idea: if we can group the edges of a graph into bigger pieces,
these pieces might form a tree structure

Definition
Consider a graph G = 〈V, E〉. A tree decomposition of G is a tree
structure T where each node of T is a subset of V, such that:

• The union of all nodes of T is V.

• For each edge (v1 → v2) ∈ E, there is a node N in T such that
v1, v2 ∈ N.

• For every vertex v ∈ V, the set of nodes of T that contain v
form a subtree of T; equivalently: if two nodes contain v, then
all nodes on the path between them also contain v
(connectedness condition).

Nodes of a tree decomposition are often called bags
(not related to the common use of “bag” as a synonym for “multiset”)
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Tree Decompositions: Example
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Tree Decompositions: Example
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Treewidth

The treewidth of a graph defines how “tree-like” it is:

Definition
The width of a tree decomposition is the size of its largest bag
minus one.
The treewidth of a graph G, denoted tw(G), is the smallest width of
any of its tree decompositions.

Simple observations:

• If G is a tree, then we can decompose it into bags that contain
only one edge{ trees have treewidth 1

• Every graph has at least one tree decomposition where all
vertices are in one bag{ max. treewidth = number of vertices
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Treewdith: Example
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Treewdith: Example
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More Examples

What is the treewidth of the following graphs?
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Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs

{ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:
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{ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!
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Exploiting Treewidth in CQ Answering
Queries of low treewidth can be answered efficiently:

Theorem (Dechter/Chekuri+Rajamaran ’97/Kolaitis+Vardi ’98/Gottlob & al. ’98)

Answering BCQs of treewidth k is possible in time O(nk log n), and
thus in polynomial time if k is fixed.
The problem is also complete for LOGCFL.

Checking for low treewidths can also be done efficiently:

Theorem (Bodlaender ’96)
Given a graph G and a fixed number k, one can check in linear time
if tw(G) ≤ k, and the corresponding tree decomposition can also be
found in linear time.

Warning: neither CQ answering nor tree decomposition might be
practically feasible if k is big
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Treewidth via Games

Seymour and Thomas [1993] gave
an alternative characterisation of treewidth:

The Cops-and-Robber Game

• The game is played on a graph G

• There are k cops and one robber, each located at one vertex
• In each turn:

– the cops can fly to an arbitrary vertex in the graph
– the robber can run along the edges of the graph, as far

as she likes, as long a she does not pass through any
vertex that was occupied by a cop before or after the turn
(the robber can run to a place where a cop was before the turn, but not

pass through such a place)

• The goal of the cops is to catch the robber;
the goal of the robber is never to be caught
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Cops and Robbers: Example
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Cops and Robbers: Example
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Cops & Robbers and Treewidth

Theorem (Seymour and Thomas)
A graph G is of treewidth ≤ k − 1 if and only if k cops have a
winning strategy in the cops & robber game on G.

Intuition: the cops together can block even the widest branch and
still move in on the robber
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Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of
treewidth

Bounded treewidth CQs correspond to certain FO-queries:

• We allow FO-queries with ∃ and ∧ as only operators

• But operators can be nested in arbitrary ways (unlike in CQs)

• Theorem: A query can be expressed with a CQ of treewidth k
if and only if it can be expressed in this logic using a query
with at most k + 1 distinct variables

Intuition: variables can be reused by binding them in more than one ∃
{ Apply a kind of “inverted prenex-normal-form transformation”
{ Variables that occur in the same atom or in a “tightly connected”

atom must use different names
{ minimum number of variables⇔ treewidth (+1)
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Treewidth: Pros and Cons

Advantages:

• Bounded treewidth is easy to check

• Bounded treewidth CQs are easy to answer

Disadvantages:

• Even families of acyclic graphs may have unbounded
treewidth

• Loss of information when using primal graph
(cliques might be single hyperedges – linear! –
or complex query patterns – exponential!)

{ Are there better ways to capture “tree-like” queries?
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Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be

connected

Query width: least number of atoms needed in bags of a query
decomposition

Theorem
Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.
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Problems with Query Width

Theorem (Gottlob et al. 1999)
Deciding if a query has query width at most k is NP-complete.

In particular, it is also hard to find a query decomposition

{ Query answering complexity drops from NP to P . . .
. . . but we need to solve another NP-hard problem first!
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Generalised Hypertree Width

Gottlob, Leone, and Scarcello had another idea on defining
tree-like hypergraphs:

Intuition:

• Combine key ideas of tree decomposition and query
decomposition

• Start by looking at a tree decomposition

• But define the width based on query atoms:
How many atoms do we need to cover all variables in a bag?

{ Generalised hypertree width
{ A technical condition is needed to get a simpler-to-check notion
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Hypertree Width

Definition
Consider a hypergraph G = 〈V, E〉. A hypertree decomposition of G
is a tree structure T where each node n of T associated with a bag
of variables Bn ⊆ V and with a set of edges Gn ⊆ E, such that:

• T with Bn yields a tree decomposition of the primal graph of G.
• For each node n of T:

(1) the vertices used in the edges Gn are a superset of Bn,
(2) if a vertex v occurs in an edge of Gn and this vertex also

occurs in Bm for some node m below n in T, then v ∈ Bn.

The width to T is the largest number of edges in a set Gn.
The hypertree width of G, hw(G), is the least width of its hypertree
decompositions.

((2) is the “special condition”: without it we get the generalised hypertree width)
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Hypertree Width: Example
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Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k
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Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree
width.

The Marshals-and-Robber Game

• The game is played on a hypergraph

• There are k marshals, each controlling one hyperedge, and
one robber located at a vertex

• Otherwise similar to cops-and-robber game

• Special condition: Marshals must shrink the space that is left
for the robber in every turn!

Hypertree width ≤ k if and only if k marshals have a winning strategy
{ hypergraph is acyclic iff 1 marshal has a winning strategy
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Hypertree Width via Logic

There is also a logical characterisation of hypertree width.

Loosely k-Guarded Logic

• Fragment of FO with ∃ and ∧

• Special form for all ∃ subexpressions:

∃x1, . . . , xn.(G1 ∧ . . . ∧ Gk ∧ ϕ)

where Gi are atoms (“guards”) and every variable that is free
in ϕ occurs in one such atom Gi.

A query has hypertree width ≤ k if and only if it can be expressed
as a loosely k-guarded formula
{ tree queries correspond to loosely 1-guarded formulae

(“loosely 1-guarded” logic is better known as guarded logic and widely studied)
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Summary and Outlook

Besides tree queries, there are other important classes of CQs that
can be answered in polynomial time:

• Bounded treewidth queries

• Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Next topics:

• What else is there besides query answering? { optimisation

• Measure expressivity rather than just complexity
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