
DATABASE THEORY

Lecture 6: Tree-like Conjunctive Queries

Markus Krötzsch

TU Dresden, 12 May 2016

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en
http://korrekt.org/


Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 12 May 2016 Database Theory slide 2 of 57

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en


Review

Conjunctive queries (CQs) are simpler than FO-queries:

• NP combined and query complexity (instead of PSpace)

• data complexity remains in AC0

CQs become even simpler if they are tree-shaped:

• GYO algorithm defines acyclic hypergraphs

• acyclic hypergraphs have join trees

• join trees can be evaluated in P with Yannakakis’ Algorithm

This time:

• Find more general conditions that make CQs tractable
{ “tree-like” queries that that are not really trees

• Play some games

Markus Krötzsch, 12 May 2016 Database Theory slide 3 of 57



Is Yannakakis’ Algorithm Optimal?
We saw that tree queries can be evaluated in polynomial time,
but we know that there are much simpler complexity classes:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

Indeed, tighter bounds have been shown:

Theorem (Gottlob, Leone, Scarcello: J. ACM 2001)
Answering tree BCQs is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word
problem of a context-free language:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

{ highly parallelisable

Markus Krötzsch, 12 May 2016 Database Theory slide 4 of 57



Is Yannakakis’ Algorithm Optimal?
We saw that tree queries can be evaluated in polynomial time,
but we know that there are much simpler complexity classes:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

Indeed, tighter bounds have been shown:

Theorem (Gottlob, Leone, Scarcello: J. ACM 2001)
Answering tree BCQs is complete for LOGCFL.

LOGCFL: the class of problems LogSpace-reducible to the word
problem of a context-free language:

NC0 ⊂ AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ . . . ⊆ NC ⊆ P

{ highly parallelisable
Markus Krötzsch, 12 May 2016 Database Theory slide 5 of 57



Generalising Tree Queries

In practice, many queries are tree queries,
but even more queries are “almost” tree queries, but not quite . . .

How can we formalise this idea?

Several attempts to define “tree-like” queries:

• Treewidth: a way to measure tree-likeness of graphs

• Query width: towards tree-like query graphs

• Hypertree width: adoption of treewidth to hypergraphs

Markus Krötzsch, 12 May 2016 Database Theory slide 6 of 57



How to recognise trees . . .

. . . from quite a long way away:

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 7 of 57



How to recognise trees . . .

. . . from quite a long way away:

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 8 of 57



Tree Decompositions
Idea: if we can group the edges of a graph into bigger pieces,
these pieces might form a tree structure

Definition
Consider a graph G = 〈V, E〉. A tree decomposition of G is a tree
structure T where each node of T is a subset of V, such that:

• The union of all nodes of T is V.

• For each edge (v1 → v2) ∈ E, there is a node N in T such that
v1, v2 ∈ N.

• For every vertex v ∈ V, the set of nodes of T that contain v
form a subtree of T; equivalently: if two nodes contain v, then
all nodes on the path between them also contain v
(connectedness condition).

Nodes of a tree decomposition are often called bags
(not related to the common use of “bag” as a synonym for “multiset”)
Markus Krötzsch, 12 May 2016 Database Theory slide 9 of 57



Tree Decompositions: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 10 of 57



Tree Decompositions: Example

F

GD

E

D

FC

B

I

H

K

NM

L

C

B

A

F

G

H
F

L

Markus Krötzsch, 12 May 2016 Database Theory slide 11 of 57



Treewidth

The treewidth of a graph defines how “tree-like” it is:

Definition
The width of a tree decomposition is the size of its largest bag
minus one.
The treewidth of a graph G, denoted tw(G), is the smallest width of
any of its tree decompositions.

Simple observations:

• If G is a tree, then we can decompose it into bags that contain
only one edge{ trees have treewidth 1

• Every graph has at least one tree decomposition where all
vertices are in one bag{ max. treewidth = number of vertices

Markus Krötzsch, 12 May 2016 Database Theory slide 12 of 57



Treewdith: Example

F

GD

E

D

FC

B

I

H

K

NM

L

C

B

A

F

G

H
F

L

{ tree decomposition of width 3

Markus Krötzsch, 12 May 2016 Database Theory slide 13 of 57



Treewdith: Example

I

H

K

NM

L

F

GD

C

B

A

F

G

H

FC

B

F

L

E

GD

D

FC

{ tree decomposition of width 2 = treewidth of the example graph

Markus Krötzsch, 12 May 2016 Database Theory slide 14 of 57



More Examples

What is the treewidth of the following graphs?

Markus Krötzsch, 12 May 2016 Database Theory slide 15 of 57



Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs

{ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:

1

2

4

3

7

5

6

1

2

4

3

7

5

6

{ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!

Markus Krötzsch, 12 May 2016 Database Theory slide 16 of 57



Treewidth and Conjunctive Queries

Treewidth is based on graphs, not hypergraphs
{ treewidth of CQ = treewidth of primal graph of query hypergraph

Query graph and corresponding primal graph:

1

2

4

3

7

5

6

1

2

4

3

7

5

6

{ Treewidth 3

Observation: acyclic hypergraphs can have unbounded treewidth!
Markus Krötzsch, 12 May 2016 Database Theory slide 17 of 57



Exploiting Treewidth in CQ Answering
Queries of low treewidth can be answered efficiently:

Theorem (Dechter/Chekuri+Rajamaran ’97/Kolaitis+Vardi ’98/Gottlob & al. ’98)

Answering BCQs of treewidth k is possible in time O(nk log n), and
thus in polynomial time if k is fixed.
The problem is also complete for LOGCFL.

Checking for low treewidths can also be done efficiently:

Theorem (Bodlaender ’96)
Given a graph G and a fixed number k, one can check in linear time
if tw(G) ≤ k, and the corresponding tree decomposition can also be
found in linear time.

Warning: neither CQ answering nor tree decomposition might be
practically feasible if k is big
Markus Krötzsch, 12 May 2016 Database Theory slide 18 of 57



Treewidth via Games

Seymour and Thomas [1993] gave
an alternative characterisation of treewidth:

The Cops-and-Robber Game

• The game is played on a graph G

• There are k cops and one robber, each located at one vertex
• In each turn:

– the cops can fly to an arbitrary vertex in the graph
– the robber can run along the edges of the graph, as far

as she likes, as long a she does not pass through any
vertex that was occupied by a cop before or after the turn
(the robber can run to a place where a cop was before the turn, but not

pass through such a place)

• The goal of the cops is to catch the robber;
the goal of the robber is never to be caught

Markus Krötzsch, 12 May 2016 Database Theory slide 19 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 20 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 21 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 22 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 23 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 24 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 25 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A

Markus Krötzsch, 12 May 2016 Database Theory slide 26 of 57



Cops and Robbers: Example

F

G

I

H

K

NM

L

D

E

C

B

A
Caught!

Markus Krötzsch, 12 May 2016 Database Theory slide 27 of 57



Cops & Robbers and Treewidth

Theorem (Seymour and Thomas)
A graph G is of treewidth ≤ k − 1 if and only if k cops have a
winning strategy in the cops & robber game on G.

Intuition: the cops together can block even the widest branch and
still move in on the robber

Markus Krötzsch, 12 May 2016 Database Theory slide 28 of 57



Treewidth via Logic

Kolaitis and Vardi [1998] gave a logical characterisation of
treewidth

Bounded treewidth CQs correspond to certain FO-queries:

• We allow FO-queries with ∃ and ∧ as only operators

• But operators can be nested in arbitrary ways (unlike in CQs)

• Theorem: A query can be expressed with a CQ of treewidth k
if and only if it can be expressed in this logic using a query
with at most k + 1 distinct variables

Intuition: variables can be reused by binding them in more than one ∃
{ Apply a kind of “inverted prenex-normal-form transformation”
{ Variables that occur in the same atom or in a “tightly connected”

atom must use different names
{ minimum number of variables⇔ treewidth (+1)

Markus Krötzsch, 12 May 2016 Database Theory slide 29 of 57



Treewidth: Pros and Cons

Advantages:

• Bounded treewidth is easy to check

• Bounded treewidth CQs are easy to answer

Disadvantages:

• Even families of acyclic graphs may have unbounded
treewidth

• Loss of information when using primal graph
(cliques might be single hyperedges – linear! –
or complex query patterns – exponential!)

{ Are there better ways to capture “tree-like” queries?

Markus Krötzsch, 12 May 2016 Database Theory slide 30 of 57



Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be

connected

Query width: least number of atoms needed in bags of a query
decomposition

Theorem
Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.

Markus Krötzsch, 12 May 2016 Database Theory slide 31 of 57



Query Width

Idea of Chekuri and Rajamaran [1997]:

• Create tree structure similar to tree decomposition

• But consider bags of query atoms instead of bags of variables
• Two connectedness conditions:

(1) Bags that refer to a certain variable must be connected
(2) Bags that refer to a certain query atom must be

connected

Query width: least number of atoms needed in bags of a query
decomposition

Theorem
Given a query decomposition for a BCQ, the query answering
problem can be decided in time polynomial in the query width.

Markus Krötzsch, 12 May 2016 Database Theory slide 32 of 57



Problems with Query Width

Theorem (Gottlob et al. 1999)
Deciding if a query has query width at most k is NP-complete.

In particular, it is also hard to find a query decomposition

{ Query answering complexity drops from NP to P . . .
. . . but we need to solve another NP-hard problem first!

Markus Krötzsch, 12 May 2016 Database Theory slide 33 of 57



Generalised Hypertree Width

Gottlob, Leone, and Scarcello had another idea on defining
tree-like hypergraphs:

Intuition:

• Combine key ideas of tree decomposition and query
decomposition

• Start by looking at a tree decomposition

• But define the width based on query atoms:
How many atoms do we need to cover all variables in a bag?

{ Generalised hypertree width
{ A technical condition is needed to get a simpler-to-check notion

Markus Krötzsch, 12 May 2016 Database Theory slide 34 of 57



Hypertree Width

Definition
Consider a hypergraph G = 〈V, E〉. A hypertree decomposition of G
is a tree structure T where each node n of T associated with a bag
of variables Bn ⊆ V and with a set of edges Gn ⊆ E, such that:

• T with Bn yields a tree decomposition of the primal graph of G.
• For each node n of T:

(1) the vertices used in the edges Gn are a superset of Bn,
(2) if a vertex v occurs in an edge of Gn and this vertex also

occurs in Bm for some node m below n in T, then v ∈ Bn.

The width to T is the largest number of edges in a set Gn.
The hypertree width of G, hw(G), is the least width of its hypertree
decompositions.

((2) is the “special condition”: without it we get the generalised hypertree width)

Markus Krötzsch, 12 May 2016 Database Theory slide 35 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

Markus Krötzsch, 12 May 2016 Database Theory slide 36 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 12 May 2016 Database Theory slide 37 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 12 May 2016 Database Theory slide 38 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 12 May 2016 Database Theory slide 39 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 12 May 2016 Database Theory slide 40 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

A,F

C,F

B,H

C,E

B,G

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

Markus Krötzsch, 12 May 2016 Database Theory slide 41 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G

Markus Krötzsch, 12 May 2016 Database Theory slide 42 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

1,2,3,6

1,3,4,6,10

3,4,6,9,10

4,6,8,9,10

4,5,6,7,8,10

A,F

C,F

B,H

C,E

B,G 5B

B

Special condition violated{ no hypertree decomposition
{ But generalised hypertree decomposition of width 2

Markus Krötzsch, 12 May 2016 Database Theory slide 43 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

Markus Krötzsch, 12 May 2016 Database Theory slide 44 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Markus Krötzsch, 12 May 2016 Database Theory slide 45 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Markus Krötzsch, 12 May 2016 Database Theory slide 46 of 57



Hypertree Width: Example

1 2

64

7

5

10

8

9

3

A

C
H

G

B

F

E
D

C,F

B,G,H

1,2,3,4,6,10

3,4,5,6,7,8,9,10

Special condition satisfied{ hypertree decomposition of width 3

Markus Krötzsch, 12 May 2016 Database Theory slide 47 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 48 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 49 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 50 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 51 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 52 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k

Markus Krötzsch, 12 May 2016 Database Theory slide 53 of 57



Hypertree Width: Results

• Relationships of hypergraph tree-likeness measures:
generalised hypertree width ≤ hypertree width ≤ query width
(both inequalities might be < in some cases)

• Acyclic graphs have hypertree width 1

• Deciding “query width < k?” is NP-complete

• Deciding “generalised hypertree width < 4?” is NP-complete

• Deciding “hypertree width < k?” is polynomial (LOGCFL)

• Hypertree decompositions can be computed in polynomial
time if k is fixed

Theorem
For a BCQ of (generalised) hypertree width k, query answering can
be decided in polynomial time, and is complete for LOGCFL.

. . . but the degree of the polynomial time bound is greater than k
Markus Krötzsch, 12 May 2016 Database Theory slide 54 of 57



Hypertree Width via Games

There is also a game characterisation of (generalised) hypertree
width.

The Marshals-and-Robber Game

• The game is played on a hypergraph

• There are k marshals, each controlling one hyperedge, and
one robber located at a vertex

• Otherwise similar to cops-and-robber game

• Special condition: Marshals must shrink the space that is left
for the robber in every turn!

Hypertree width ≤ k if and only if k marshals have a winning strategy
{ hypergraph is acyclic iff 1 marshal has a winning strategy

Markus Krötzsch, 12 May 2016 Database Theory slide 55 of 57



Hypertree Width via Logic

There is also a logical characterisation of hypertree width.

Loosely k-Guarded Logic

• Fragment of FO with ∃ and ∧

• Special form for all ∃ subexpressions:

∃x1, . . . , xn.(G1 ∧ . . . ∧ Gk ∧ ϕ)

where Gi are atoms (“guards”) and every variable that is free
in ϕ occurs in one such atom Gi.

A query has hypertree width ≤ k if and only if it can be expressed
as a loosely k-guarded formula
{ tree queries correspond to loosely 1-guarded formulae

(“loosely 1-guarded” logic is better known as guarded logic and widely studied)

Markus Krötzsch, 12 May 2016 Database Theory slide 56 of 57



Summary and Outlook

Besides tree queries, there are other important classes of CQs that
can be answered in polynomial time:

• Bounded treewidth queries

• Bounded hypertree width queries

General idea: decompose the query in a tree structure

Other possible characterisations via games and logic

Next topics:

• What else is there besides query answering? { optimisation

• Measure expressivity rather than just complexity

Markus Krötzsch, 12 May 2016 Database Theory slide 57 of 57


