TECHNISCHE

FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 11: Implementation and Optimisation of Datalog

Markus Krötzsch

Overview

1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog
10. Expressive Power and Complexity of Datalog
11. Implementation techniques for Datalog
12. Path queries
13. Constraints
14. Outlook: database theory in practice

See course homepage [\Rightarrow link] for more information and materials
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 2 of 29

Datalog Implementation and Optimisation

How can Datalog query answering be implemented?
How can Datalog queries be optimised?

Recall: static query optimisation

- Query equivalence
- Query emptiness
- Query containment
\leadsto all undecidable for FO queries, but decidable for (U)CQs

Datalog cannot express all query mappings in P but semipositive Datalog with a successor ordering can

Learning from CQ Containment?

Checking Rule Entailment

The containment decision procedure for CQs suggests a procedure for single Datalog rules:

- Consider a Datalog program P and a rule $H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$.
- Define a database $\mathcal{I}_{B_{1} \wedge \ldots \wedge B_{n}}$ as for CQs:
- For every variable x in $H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$, we introduce a fresh constant c_{x}, not used anywhere yet
- We define H^{c} to be the same as H but with each variable x replaced by c_{x}; similarly we define B_{i}^{c} for each $1 \leq i \leq n$
- The database $I_{B_{1} \wedge \ldots B_{n}}$ contains exactly the facts B_{i}^{c} ($1 \leq i \leq n$)
- Now check if $H^{c} \in T_{P}^{\infty}\left(\mathcal{I}_{B_{1} \wedge \ldots \wedge B_{n}}\right)$:
- If no, then there is a database on which $H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$ produces an entailment that P does not produce.
- If yes, then $P \vDash H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$

Example: Rule Entailment

Let P be the program

$$
\begin{aligned}
& \operatorname{Ancestor}(x, y) \leftarrow \operatorname{parent}(x, y) \\
& \operatorname{Ancestor}(x, z) \leftarrow \operatorname{parent}(x, y) \wedge \operatorname{Ancestor}(y, z)
\end{aligned}
$$

and consider the rule $\operatorname{Ancestor}(x, z) \leftarrow \operatorname{parent}(x, y) \wedge \operatorname{parent}(y, z)$.
Then $I_{\text {parent }(x, y) \text {)parent }(y, z)}=\left\{\operatorname{parent}\left(c_{x}, c_{y}\right)\right.$, parent $\left.\left(c_{y}, c_{z}\right)\right\}(\operatorname{abbr}$. as $I)$. We can compute $T_{P}^{\infty}(\mathcal{I})$:

$$
\begin{aligned}
& T_{P}^{0}(\mathcal{I})=I \\
& T_{P}^{1}(\mathcal{I})=\left\{\operatorname{Ancestor}\left(c_{x}, c_{y}\right), \text { Ancestor }\left(c_{y}, c_{z}\right)\right\} \cup \mathcal{I} \\
& T_{P}^{2}(\mathcal{I})=\left\{\operatorname{Ancestor}\left(c_{x}, c_{z}\right) \cup T_{P}^{1}(\mathcal{I})\right. \\
& T_{P}^{3}(\mathcal{I})=T_{P}^{2}(I)=T_{P}^{\infty}(I)
\end{aligned}
$$

Therefore, Ancestor $(x, z)^{c}=$ Ancestor $\left(c_{x}, c_{z}\right) \in T_{P}^{\infty}(\mathcal{I})$,
so P entails Ancestor $(x, z) \leftarrow \operatorname{parent}(x, y) \wedge \operatorname{parent}(y, z)$.
Markus Krötzsch, 29 June 2015

Idea for two Datalog programs P_{1} and P_{2} :

- If $P_{2} \vDash P_{1}$, then every entailment of P_{1} is also entailed by P_{2}
- In particular, this means that P_{1} is contained in P_{2}
- We have $P_{2} \vDash P_{1}$ if $P_{2} \vDash H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$ for every rule $H \leftarrow B_{1} \wedge \ldots \wedge B_{n} \in P_{1}$
- We can decide $P_{2} \vDash H \leftarrow B_{1} \wedge \ldots \wedge B_{n}$.

Can we decide Datalog containment this way?
\leadsto No! In fact, Datalog containment is undecidable. What's wrong?

Implication Entailment vs. Datalog Entailment

$P_{1}:$	$P_{2}:$		
$\mathrm{A}(x, y)$	$\leftarrow \operatorname{parent}(x, y)$	$\mathrm{B}(x, y)$	$\leftarrow \operatorname{parent}(x, y)$
$\mathrm{A}(x, z)$	$\leftarrow \operatorname{parent}(x, y) \wedge \mathrm{A}(y, z)$	$\mathrm{B}(x, z)$	$\leftarrow \operatorname{parent}(x, y) \wedge \mathrm{B}(y, z)$

Consider the Datalog queries $\left\langle A, P_{1}\right\rangle$ and $\left\langle B, P_{2}\right\rangle$:

- Clearly, $\left\langle A, P_{1}\right\rangle$ and $\left\langle B, P_{2}\right\rangle$ are equivalent (and mutually contained in each other).
- However, P_{2} entails no rule of P_{1} and P_{1} entails no rule of P_{2}.
\leadsto IDB predicates do not matter in Datalog, but predicate names matter in first-order implications

First-Order vs. Second-Order Logic

A Datalog program looks like a set of first-order implications, but it has a second-order semantics

We have already seen that Datalog can express things that are impossible to express in FO queries - that's why we introduced it! ${ }^{1}$

Consequences for query optimisation:

- Entailment between sets of first-order implications is decidable (shown above)
- Containment between Datalog queries is not decidable (shown next)

[^0]
Datalog as Second-Order Logic

Datalog is a fragment of second-order logic:
IDB pred's are like variables that can take any set of tuples as value!
Example: the query $\left\langle A, P_{1}\right\rangle$ can be expressed by the formula

$$
\forall \mathrm{A} \cdot\left(\begin{array}{clc}
\forall x, y \cdot \mathrm{~A}(x, y) & \leftarrow \operatorname{parent}(x, y) & \wedge \\
\forall x, y, z \cdot \mathrm{~A}(x, z) & \leftarrow \operatorname{parent}(x, y) \wedge \mathrm{A}(y, z) &
\end{array}\right) \rightarrow \mathrm{A}(v, w)
$$

- This is a formula with two free variables v and w.
\leadsto query with two result variables
- Intuitive semantics: " $\langle c, d\rangle$ is a query result if $\mathrm{A}(c, d)$ holds for all possible values of A that satisfy the rules"
\leadsto Datalog semantics in other words
We can express any Datalog query like this, with one second-order variable per IDB predicate.
Markus Krötzsch, 29 June $2015 \quad$ Foundations of Databases and Query Languages slide 10 of 29

Undecidability of Datalog Query Containment

A classical undecidable problem: Post Correspondence Problem

- Input: two lists of words $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$
- Output: "yes" if there is a sequence of indices $i_{1}, i_{2}, i_{3}, \ldots, i_{m}$ such that $\alpha_{i_{1}} \alpha_{i_{2}} \alpha_{i_{3}} \cdots \alpha_{i_{m}}=\beta_{i_{1}} \beta_{i_{2}} \beta_{i_{3}} \cdots \beta_{i_{m}}$.
\leadsto we will reduce PCP to Datalog containment
We need to define Datalog programs that work on databases that encode words:
- We represent words by chains of binary predicates
- Binary EDB predicates represent a letters
- For each letter σ, we use a binary EDB predicate letter[σ]
- We assume that the words α_{i} have the form $a_{1}^{i} \cdots a_{\left|\beta_{i}\right|}^{i}$, and that the words β_{i} have the form $b_{1}^{i} \cdots b_{\left|\beta_{i}\right|}^{i}$

Solving PCP with Datalog Containment

A program P_{1} to recognise potential PCP solutions.

Rules to recognise words α_{i} and β_{i} for every $i \in\{1, \ldots, m\}$:

$$
\begin{aligned}
& \mathrm{A}_{i}\left(x_{0}, x_{\left|\alpha_{i}\right|}\right) \leftarrow \operatorname{letter}\left[a_{1}^{i}\right]\left(x_{0}, x_{1}\right) \wedge \ldots \wedge \operatorname{letter}\left[a_{\left|\alpha_{i}\right|}^{i}\right]\left(x_{\left|\alpha_{i}\right|-1}, x_{\left|\alpha_{i}\right|}\right) \\
& \mathrm{B}_{i}\left(x_{0}, x_{\left|\beta_{i}\right|}\right) \leftarrow \operatorname{letter}\left[b_{1}^{i}\right]\left(x_{0}, x_{1}\right) \wedge \ldots \wedge \operatorname{letter}\left[b_{\left|\beta_{i}\right|}^{i}\right]\left(x_{\left|\beta_{i}\right|-1}, x_{\left|\beta_{i}\right|}\right)
\end{aligned}
$$

Rules to check for synchronised chairs (for all $i \in\{1, \ldots, m\}$):

$$
\begin{aligned}
\operatorname{PCP}\left(x, y_{1}, y_{2}\right) & \leftarrow A_{i}\left(x, y_{1}\right) \wedge B_{i}\left(x, y_{2}\right) \\
\operatorname{PCP}\left(x, z_{1}, z_{2}\right) & \leftarrow \operatorname{PCP}\left(x, y_{1}, y_{2}\right) \wedge A_{i}\left(y_{1}, z_{1}\right) \wedge B_{i}\left(y_{2}, z_{2}\right) \\
\operatorname{Accept}() & \leftarrow \operatorname{PCP}(x, z, z)
\end{aligned}
$$

Solving PCP with Datalog Containment (3)

Example: $\alpha_{1}=$ aaaaa, $\beta_{1}=b b b$
Problem: P_{1} also accepts some unintended cases

$\begin{array}{ll}\mathrm{A}_{1} & \mathrm{~B}_{1}\end{array}$
Additional IDB facts that are derived:

$$
\operatorname{PCP}(1,6,6) \quad \text { Accept }()
$$

Solving PCP with Datalog Containment (2)

Example: $\alpha_{1}=a a, \beta_{1}=a, \alpha_{2}=b, \beta_{2}=a a b$
Example for an indented database and least model (selected parts):

B_{2}
Additional IDB facts that are derived (among others):

$$
\operatorname{PCP}(1,3,2) \quad \operatorname{PCP}(1,5,3) \quad \operatorname{PCP}(1,6,6) \quad \text { Accept }()
$$

Solving PCP with Datalog Containment (4)

Solution: specify a program P_{2} that recognises all unwanted cases
P_{2} consists of the following rules (for all letters σ, σ^{\prime}):

$$
\begin{aligned}
\mathrm{EP}(x, x) & \leftarrow \\
\mathrm{EP}\left(y_{1}, y_{2}\right) & \leftarrow \mathrm{EP}\left(x_{1}, x_{2}\right) \wedge \operatorname{letter}[\sigma]\left(x_{1}, y_{1}\right) \wedge \operatorname{letter}[\sigma]\left(x_{2}, y_{2}\right) \\
\mathrm{Accept}() & \leftarrow \operatorname{EP}\left(x_{1}, x_{2}\right) \wedge \operatorname{letter}[\sigma]\left(x_{1}, y_{1}\right) \wedge \operatorname{letter}\left[\sigma^{\prime}\right]\left(x_{2}, y_{2}\right) \quad \sigma \neq \sigma^{\prime} \\
\mathrm{NEP}\left(x_{1}, y_{2}\right) & \leftarrow \mathrm{EP}\left(x_{1}, x_{2}\right) \wedge \operatorname{letter}[\sigma]\left(x_{2}, y_{2}\right) \\
\mathrm{NEP}\left(x_{1}, y_{2}\right) & \leftarrow \operatorname{NEP}\left(x_{1}, x_{2}\right) \wedge \operatorname{letter}[\sigma]\left(x_{2}, y_{2}\right) \\
\operatorname{Accept}() & \leftarrow \operatorname{NEP}(x, x)
\end{aligned}
$$

Intuition:

- EP defines equal paths (forwards, from one starting point)
- NEP defines paths of different length (from one starting point to the same end point)
$\leadsto P_{2}$ accepts all databases with distinct parallel paths
Markus Krötzsch, 29 June 2015

Solving PCP with Datalog Containment (5)

What does it mean if $\left\langle\right.$ Accept, $\left.P_{1}\right\rangle$ is contained in $\left\langle\right.$ Accept, $\left.P_{2}\right\rangle$?
The following are equivalent:

- All databases with potential PCP solutions also have distinct parallel paths.
- Databases without distinct parallel paths have no PCP solutions.
- Linear databases (words) have no PCP solutions.
- The answer to the PCP is "no".
\leadsto If we could decide Datalog containment, we could decide PCP

Theorem

Containment and equivalence of Datalog queries are undecidable.
(Note that emptiness of Datalog queries is trivial)

Implementing Datalog

FO queries (and thus also CQs and UCQs) are supported by almost all DMBS
\leadsto many specific implementation and optimisation techniques

How can Datalog queries be answered in practice?
\rightarrow techniques for dealing with recursion in DBMS query answering
There are two major paradigms for answering recursive queries:

- Bottom-up: derive conclusions by applying rules to given facts
- Top-down: search for proofs to infer results given query

Implementation of Datalog

Markus Krötzsch, 29 June 2015
Foundations of Databases and Query Languages slide 18 of 29

Computing Datalog Query Answers Bottom-Up

We already saw a way to compute Datalog answers bottom-up: the step-wise computation of the consequence operator T_{P}

Bottom-up computation is known under many names:

- Forward-chaining since rules are "chained" from premise to conclusion (common in logic programming)
- Materialisation since inferred facts are stored ("materialised") (common in databases)
- Saturation since the input database is "saturated" with inferences (common in theorem proving)
- Deductive closure since we "close" the input under entailments (common in formal logic)

Naive Evaluation of Datalog Queries

What's Wrong with Naive Evaluation?

A direct approach for computing T_{P}^{∞}

```
\(T_{p}^{0}:=\emptyset\)
\(i:=0\)
repeat :
        \(T_{P}^{i+1}:=\emptyset\)
        for \(H \leftarrow B_{1} \wedge \ldots \wedge B_{\ell} \in P\) :
            for \(\theta \in B_{1} \wedge \ldots \wedge B_{\ell}\left(T_{P}^{i}\right):\)
                \(T_{P}^{i+1}:=T_{P}^{i+1} \cup\{H \theta\}\)
    \(i:=i+1\)
until \(T_{P}^{i-1}=T_{P}^{i}\)
return \(T_{P}^{i}\)
```

Notation for line 06/07:

- a substitution θ is a mapping from variables to database elements
- for a formula F, we write $F \theta$ for the formula obtained by replacing each free variable x in F by $\theta(x)$
- for a CQ Q and database I, we write $\theta \in Q(\mathcal{I})$ if $\mathcal{I} \vDash Q \theta$

Less Naive Evaluation Strategies

Does it really matter how often we consider a rule match?
After all, each fact is added only once ...

In practice, finding applicable rules takes significant time, even if the conclusion does not need to be added - iteration takes time! \leadsto huge potential for optimisation

Observation:
we derive the same conclusions over and over again in each step
Idea: apply rules only to newly derived facts
\sim semi-naive evaluation

An example Datalog program:

$$
\begin{array}{ll}
& \mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y) \\
(R 2) & \mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z)
\end{array}
$$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \text { matches for }(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 4 \times(R 1)+3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 4 \times(R 1)+8 \times(R 2) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 4 \times(R 1)+10 \times(R 2)
\end{array}
$$

In total, we considered 37 matches to derive 11 facts

$$
\text { Markus Krötzsch, } 29 \text { June } 2015 \quad \text { Foundations of Databases and Query Languages } \quad \text { slide } 22 \text { of } 29
$$

Semi-Naive Evaluation

The computation yields sets $T_{P}^{0} \subseteq T_{P}^{1} \subseteq T_{P}^{2} \subseteq \ldots \subseteq T_{P}^{\infty}$

- For an IDB predicate R , let R^{i} be the "predicate" that contains exactly the R-facts in T_{P}^{i}
- For $i \leq 1$, let Δ_{R}^{i} be the collection of facts $\mathrm{R}^{i} \backslash \mathrm{R}^{i-1}$

We can restrict rules to use only some computations.
Some options for the computation in step $i+1$:

$$
\begin{array}{rr}
\mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) & \text { same as original rule } \\
\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z) & \text { restrict to new facts } \\
\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z) & \text { partially restrict to new facts } \\
\mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z) & \text { partially restrict to new facts }
\end{array}
$$

at to chose?

Semi-Naive Evaluation (2)

Inferences that involve new and old facts are necessary:

$$
\begin{array}{lll}
& \begin{array}{ll}
\mathrm{e}(1,2) & \mathrm{e}(2,3) \\
\mathrm{T}(x, y) \leftarrow \mathrm{e}(3,4) & \mathrm{e}(4,5) \\
(R 1) & \mathrm{T}(x, y) \\
\mathrm{T}(x, z) \leftarrow \mathrm{T}(x, y) \wedge \mathrm{T}(y, z) & \\
& \\
& T_{P}^{0}=\emptyset \\
\Delta_{\mathrm{T}}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & T_{P}^{1}=\Delta_{\mathrm{T}}^{1} \\
\Delta_{\mathrm{T}}^{2}=\{\mathrm{T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & T_{P}^{2}=T_{P}^{1} \cup \Delta_{\mathrm{T}}^{2} \\
\Delta_{\mathrm{T}}^{3}=\{\mathrm{T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & T_{P}^{3}=T_{P}^{2} \cup \Delta_{\mathrm{T}}^{3} \\
\Delta_{\mathrm{T}}^{4}=\emptyset & T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty}
\end{array}
\end{array}
$$

To derive $T(1,4)$ in Δ_{T}^{3}, we need to combine $\mathrm{T}(1,3) \in \Delta_{\mathrm{T}}^{2}$ with $\mathrm{T}(3,4) \in \Delta_{\mathrm{T}}^{1}$ or $\mathrm{T}(1,2) \in \Delta_{\mathrm{T}}^{1}$ with $\mathrm{T}(2,4) \in \Delta_{\mathrm{T}}^{2}$
\leadsto rule $\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$ is not enough
Markus Krötzsch, 29 June $2015 \quad$ Foundations of Databases and Query Languages slide 25 of 29

Semi-Naive Evaluation: Example

	$\mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5)$
$(R 1)$	$\mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y)$
$(R 2.1)$	$\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z)$
$\left(R 2.2^{\prime}\right)$	$\mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$

How many body matches do we need to iterate over?

$$
\begin{array}{ll}
T_{P}^{0}=\emptyset & \text { initialisation } \\
T_{P}^{1}=\{\mathrm{T}(1,2), \mathrm{T}(2,3), \mathrm{T}(3,4), \mathrm{T}(4,5)\} & 4 \times(R 1) \\
T_{P}^{2}=T_{P}^{1} \cup\{\mathrm{~T}(1,3), \mathrm{T}(2,4), \mathrm{T}(3,5)\} & 3 \times(R 2) \\
T_{P}^{3}=T_{P}^{2} \cup\{\mathrm{~T}(1,4), \mathrm{T}(2,5), \mathrm{T}(1,5)\} & 5 \times(R 2) \\
T_{P}^{4}=T_{P}^{3}=T_{P}^{\infty} & 2 \times(R 2)
\end{array}
$$

In total, we considered 14 matches to derive 11 facts

Semi-Naive Evaluation (3)

Correct approach: consider only rule application that use at least one newly derived IDB atom

For example program:

	$\mathrm{e}(1,2) \quad \mathrm{e}(2,3) \quad \mathrm{e}(3,4) \quad \mathrm{e}(4,5)$
$(R 1)$	$\mathrm{T}(x, y) \leftarrow \mathrm{e}(x, y)$
$(R 2.1)$	$\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \mathrm{T}^{i}(y, z)$
$(R 2.2)$	$\mathrm{T}(x, z) \leftarrow \mathrm{T}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$

There is still redundancy here: the matches for
$\mathrm{T}(x, z) \leftarrow \Delta_{\mathrm{T}}^{i}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)$ are covered by both $(R 2.1)$ and (R2.2)
\leadsto replace $(R 2.2)$ by the following rule:

$$
\left(R 2.2^{\prime}\right) \quad \mathrm{T}(x, z) \leftarrow \mathrm{T}^{i-1}(x, y) \wedge \Delta_{\mathrm{T}}^{i}(y, z)
$$

EDB atoms do not change, so their Δ would be \emptyset \sim ignore such rules after the first iteration

$$
\text { Markus Krötzsch, } 29 \text { June } 2015 \quad \text { Foundations of Databases and Query Languages } \quad \text { slide } 26 \text { of } 29
$$

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

$$
\mathrm{H}(\vec{x}) \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \mathrm{I}_{1}\left(\vec{z}_{1}\right) \wedge \mathrm{I}_{2}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \mathrm{I}_{m}\left(\vec{z}_{m}\right)
$$

is transformed into m rules

$$
\begin{aligned}
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \Delta_{\mathrm{I}_{1}}^{i}\left(\vec{z}_{1}\right) \wedge \mathrm{I}_{2}^{i}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \mathrm{I}_{m}^{i}\left(\vec{z}_{m}\right) \\
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \mathrm{I}_{1}^{i-1}\left(\vec{z}_{1}\right) \wedge \Delta_{\mathrm{l}_{2}}^{i}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \mathrm{I}_{m}^{i}\left(\vec{z}_{m}\right) \\
& \ldots \\
\mathrm{H}(\vec{x}) & \leftarrow \mathrm{e}_{1}\left(\vec{y}_{1}\right) \wedge \ldots \wedge \mathrm{e}_{n}\left(\vec{y}_{n}\right) \wedge \mathrm{I}_{1}^{i-1}\left(\vec{z}_{1}\right) \wedge \mathrm{I}_{2}^{i-1}\left(\vec{z}_{2}\right) \wedge \ldots \wedge \Delta_{\mathrm{I}_{m}}^{i}\left(\vec{z}_{m}\right)
\end{aligned}
$$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Summary and Outlook

Perfect Datalog optimisation is impossible

- same situation as for FO queries
- but for somewhat different reasons

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Next topics

- More on Datalog implementation
- Further query languages
- Applications

[^0]: ${ }^{1}$ Possible confusion when comparing of FO and Datalog: entailments of first-order implications agree with answers of Datalog queries, so it seems we can break the FO locality restrictions; but query answering is model checking not entailment; FO model checking is much weaker than second-order model checking Markus Krötzsch, 29 June 2015

