FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch

TU Dresden, 4 May 2015

Overview

1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Query optimization
6. Conjunctive queries
7. Limits of first-order query expressiveness
8. Introduction to Datalog
9. Implementation techniques for Datalog
10. Path queries
11. Constraints (1)
12. Constraints (2)
13. "Buffer time"
14. Outlook: database theory in practice

How to Measure Query Answering Complexity

Query answering as decision problem
\leadsto consider Boolean queries
Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \text { ExpTime }
$$

An Algorithm for Evaluating FO Queries

function $\operatorname{Eval}(\varphi, I)$

01	switch $(\varphi)\{$
02	case $p\left(c_{1}, \ldots, c_{n}\right): \operatorname{return}\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$
03	case $\neg \psi:$ return $\neg \operatorname{Eval}(\psi, \mathcal{I})$
04	case $\psi_{1} \wedge \psi_{2}:$ return $\operatorname{Eval}\left(\psi_{1}, \mathcal{I}\right) \wedge \operatorname{Eval}\left(\psi_{2}, \mathcal{I}\right)$
05	case $\exists x . \psi:$
06	for $c \in \Delta^{I}\{$
07	\quad if $\operatorname{Eval}(\psi[x \mapsto c], \mathcal{I})$ then return true
08	$\}$
09	return false
10	$\}$

FO Algorithm Worst-Case Runtime

Let m be the size of φ, and let $n=|I|$ (total table sizes)

- How many recursive calls of Eval are there?
\leadsto one per subexpression: at most m
- Maximum depth of recursion?
\leadsto bounded by total number of calls: at most m
- Maximum number of iterations of for loop?
$\leadsto\left|\Delta^{I}\right| \leq n$ per recursion level
\leadsto at most n^{m} iterations
- Checking $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$ can be done in linear time w.r.t. n

Runtime in $m \cdot n^{m} \cdot n=m \cdot n^{m+1}$

Time Complexity of FO Algorithm

Let m be the size of φ, and let $n=|I|$ (total table sizes)
Runtime in $m \cdot n^{m+1}$

Time complexity of FO query evaluation

- Combined complexity: in ExpTime
- Data complexity (m is constant): in P
- Query complexity (n is constant): in ExpTime

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of φ, and let $n=|\mathcal{I}|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of $\varphi: \log m$
- For each variable in φ (at most m), store current constant assignment (as a pointer): $m \cdot \log n$
- Checking $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in p^{I}$ can be done in logarithmic space w.r.t. n

Memory in $m \log m+m \log n+\log n=m \log m+(m+1) \log n$

Space Complexity of FO Algorithm

Let m be the size of φ, and let $n=|I|$ (total table sizes)

Memory in $m \log m+(m+1) \log n$
Space complexity of FO query evaluation

- Combined complexity: in PSpace
- Data complexity (m is constant): in L
- Query complexity (n is constant): in PSPace

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get?

Hardness proof: reduce a known PSpace-hard problem to FO query evaluation

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSpace. Is this the best we can get?

Hardness proof: reduce a known PSPACE-hard problem to FO query evaluation
\leadsto QBF satisfiability
Let $\bigcirc_{1} X_{1} . \bigcirc_{2} X_{2} \cdots \bigcirc_{n} X_{n} . \varphi\left[X_{1}, \ldots, X_{n}\right]$ be a QBF (with $\bigcirc_{i} \in\{\forall, \exists\}$)

- Database instance I with $\Delta^{I}=\{0,1\}$
- One table with one row: true(1)
- Transform input QBF into Boolean FO query

$$
\bigcirc_{1} x_{1} \cdot \varrho_{2} x_{2} \cdots \wp_{n} x_{n} . \varphi\left[X_{1} \mapsto \operatorname{true}\left(x_{1}\right), \ldots, X_{n} \mapsto \operatorname{true}\left(x_{n}\right)\right]
$$

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p . \neg p$ leads to FO query $\exists x . \neg \operatorname{true}(x)$

PSpace-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p . \neg p$ leads to FO query $\exists x . \neg \operatorname{true}(x)$
Better approach:

- Consider QBF $\bigcirc_{1} X_{1} . \varrho_{2} X_{2} \cdots \bigcirc_{n} X_{n} . \varphi\left[X_{1}, \ldots, X_{n}\right]$ with φ in negation normal form: negations only occur directly before variables X_{i} (still PSpace-complete: exercise)
- Database instance I with $\Delta^{I}=\{0,1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

$$
\bigcirc_{1} x_{1} \cdot \bigcirc_{2} x_{2} \cdots \bigcirc_{n} x_{n} \cdot \varphi^{\prime}
$$

where φ^{\prime} is obtained by replacing each negated variable $\neg X_{i}$ with false $\left(x_{i}\right)$ and each non-negated variable X_{i} with true $\left(x_{i}\right)$.

Combined Complexity of FO Query Answering

Theorem

The evaluation of FO queries is PSPACE-complete with respect to combined complexity.

We have actually shown something stronger:

Theorem

The evaluation of FO queries is PSPACE-complete with respect to query complexity.

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
\leadsto can we do any better?
What could be better than L?

$$
? \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \ldots
$$

\leadsto we need to define circuit complexities first

Boolean Circuits

Definition

A Boolean circuit is a finite, directed, acyclic graph where

- each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes
\leadsto we will only consider Boolean circuits with exactly one output
\leadsto propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

Example

A Boolean circuit over an input string $x_{1} x_{2} \ldots x_{n}$ of length n

Corresponds to formula $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right) \vee \ldots \vee\left(x_{n-1} \wedge x_{n}\right)$
\leadsto accepts all strings with at least two 1 s

Circuits as a Model for Parallel Computation

Previous example:

$\leadsto n^{2}$ processors working in parallel
\leadsto computation finishes in 2 steps

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation
\leadsto refinement of polynomial time taking parallelizability into account

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits
\leadsto each circuit only has a finite number of different inputs
\leadsto not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits
\leadsto each circuit only has a finite number of different inputs
\leadsto not a computationally interesting problem
How can we solve interesting problems with Boolean circuits?

Definition

A uniform family of Boolean circuits is a set of circuits $C_{n}(n \geq 0)$ that can be computed from n (usually in logarithmic space or time; we don't discuss the details here).

A language $\mathcal{L} \subseteq\{0,1\}^{*}$ is decided by a uniform family $\left(C_{n}\right)_{n \geq 0}$ of Boolean circuits if for each word w of length $|w|$:

$$
w \in \mathcal{L} \quad \text { if and only if } \quad C_{|w|}(w)=1
$$

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?
Relevant metrics:

- size of the circuit: overall number of gates
(as function of input size)
- depth of the circuit: longest path of gates
(as function of input size)
- fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition

$\left(C_{n}\right)_{n \geq 0}$ is a family of small-depth circuits if

- the size of C_{n} is polynomial in n,
- the depth of C_{n} is poly-logarithmic in n, that is, $O\left(\log ^{k} n\right)$.

The Complexity Classes NC and AC

Two important types of small-depth circuits

Definition
 NC^{k} is the class of problems that can be solved by uniform families of circuits $\left(C_{n}\right)_{n \geq 0}$ of fan-in ≤ 2, size polynomial in n, and depth in $O\left(\log ^{k} n\right)$.

The class NC is defined as NC $=\bigcup_{k \geq 0} \mathrm{NC}^{k}$.
("Nick's Class" named after Nicholas Pippenger by Stephen Cook)

Definition

AC^{k} and AC are defined like NC^{k} and NC , respectively, but for circuits with arbitrary fan-in.
(A is for "Alternating": AND-OR gates alternate in such circuits)

Example

family of polynomial size, constant depth, arbitrary fan-in circuits \leadsto in AC^{0}

We can eliminate arbitrary fan-ins by using more layers of gates:

family of polynomial size, logarithmic depth, bounded fan-in circuits \leadsto in NC^{1}

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

$$
\mathrm{NC}^{0} \subseteq \mathrm{AC}^{0} \subseteq \mathrm{NC}^{1} \subseteq \mathrm{AC}^{1} \subseteq \ldots \subseteq \mathrm{AC}^{k} \subseteq \mathrm{NC}^{k+1} \subseteq \ldots
$$

Only few inclusions are known to be proper: $\mathrm{NC}^{0} \subset \mathrm{AC}^{0} \subset \mathrm{NC}^{1}$
Direct consequence of above hierarchy: $\mathrm{NC}=\mathrm{AC}$
Interesting relations to other classes:

$$
\mathrm{NC}^{0} \subset \mathrm{AC}^{0} \subset \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{AC}^{1} \subseteq \ldots \subseteq \mathrm{NC} \subseteq \mathrm{P}
$$

Intuition:

- Problems in NC are parallelisable
- Problems in P \NC are inherently sequential

However: it is not known if $\mathrm{NC} \neq \mathrm{P}$

Back to Databases ...

Theorem

The evaluation of FO queries is complete for (logtime uniform) AC^{0} with respect to data complexity.

Proof:

- Membership: For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- Hardness: Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)

From Query to Circuit

Assumption:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain
Sketch of construction:

- one input node for each possible database tuple (over given schema and active domain)
\leadsto true or false depending on whether tuple is present or not
- Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula
\leadsto true or false depending on whether the subformula holds for this tuple or not
- Logical operators correspond to gate types: basic operators obvious, \forall as generalised conjunction, \exists as generalised disjunction
- subformula with n free variables $\sim \mid$ adom $\left.\right|^{n}$ gates \sim especially: |adom| ${ }^{0}=1$ output gate for Boolean query

Example

We consider the formula

$$
\exists z \cdot(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)
$$

Over the database instance:
R:

a	a
a	b

S:

b	b
b	c

Active domain: $\{a, b, c\}$

Example: ヨz. $(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

$R(a, a)$	$R(a, b)$	$R(a, c)$	\ldots	$S(a, a)$	\ldots	$S(b, a)$	$S(b, b)$	$S(b, c)$
1	1	0	\ldots	0	\ldots	0	1	1

Example: ヨz. $(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x . \exists y . R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x . \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Example: $\exists z .(\exists x \cdot \exists y \cdot R(x, y) \wedge S(y, z)) \wedge \neg R(a, z)$

Summary and Outlook

The evaluation of FO queries is

- PSpace-complete for combined complexity
- PSpace-complete for query complexity
- AC^{0}-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P
Open questions:

- Which other computing problems are interesting? (next lecture)
- Are there query languages with lower complexities?
- How can we study the expressiveness of query languages?

