TECHNISCHE
@ UNIVERSITAT
DRESDEN

FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 4: Complexity of FO Query Answering

Markus Krotzsch

TU Dresden, 4 May 2015

Overview

© N o o s~ b=

©

10.
11.
12.
13.
14.

Introduction | Relational data model
First-order queries

Complexity of query answering
Complexity of FO query answering
Query optimization

Conjunctive queries

Limits of first-order query expressiveness
Introduction to Datalog
Implementation techniques for Datalog
Path queries

Constraints (1)

Constraints (2)

“Buffer time”

Outlook: database theory in practice

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 2 of 38

How to Measure Query Answering Complexity

Query answering as decision problem
~» consider Boolean queries

Various notions of complexity:

e Combined complexity (complexity w.r.t. size of query and
database instance)

e Data complexity (worst case complexity for any fixed query)

e Query complexity (worst case complexity for any fixed
database instance)

Various common complexity classes:

LcNLcCP c NP c PSrpace € EXPTIME

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 3 of 38

An Algorithm for Evaluating FO Queries

function Eval(y, I)

01
02
03
04
05
06
07
08
09
10

switch (¢) {

}

case p(ci,...,c,) : return{cy,...,c,) € p’
case - : return —Eval(y,)
case Y| Ay, : return Eval(y,, 7) A Eval(y,, 1)
case Jdx.y :
for c e A’ {
if Eval(y[x — c],) then return true

}

return false

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 4 of 38

FO Algorithm Worst-Case Runtime

Let m be the size of ¢, and let n = | 7] (total table sizes)

e How many recursive calls of Eval are there?
~» one per subexpression: at most m

Maximum depth of recursion?
~» bounded by total number of calls: at most m

e Maximum number of iterations of for loop?
~> |AT| < n per recursion level
~» at most n™ iterations

Checking {cy,...,cy) € pI can be done in linear time w.r.t. n
Runtimeinm-n" -n=m-n

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 5 of 38

Time Complexity of FO Algorithm

Let m be the size of ¢, and let n = | 7] (total table sizes)
Runtime in m - n*!

Time complexity of FO query evaluation
e Combined complexity: in EXPTIME
e Data complexity (m is constant): in P
e Query complexity (n is constant): in EXpTIME

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 6 of 38

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let m be the size of ¢, and let n = | 7] (total table sizes)

e For each (recursive) call, store pointer to current
subexpression of ¢: logm

e For each variable in ¢ (at most m), store current constant
assignment (as a pointer): m - logn

e Checking (ci,...,c,) € p’ can be done in logarithmic space
w.rt. n

Memory in mlogm + mlogn + logn = mlogm + (m + 1)logn

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 7 of 38

Space Complexity of FO Algorithm

Let m be the size of ¢, and let n = | 7] (total table sizes)
Memory in mlogm + (m + 1)logn

Space complexity of FO query evaluation
e Combined complexity: in PSPACE
e Data complexity (m is constant): in LL
e Query complexity (n is constant): in PSPACE

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages

slide 8 of 38

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSPACE.
Is this the best we can get?

Hardness proof: reduce a known PSpACE-hard problem to FO
query evaluation

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 9 of 38

FO Combined Complexity

The algorithm shows that FO query evaluation is in PSPACE.
Is this the best we can get?

Hardness proof: reduce a known PSpACE-hard problem to FO
query evaluation
~> QBF satisfiability

Let O1X,.0:X5. - 0, X,,.0[X1, ..., X,] be a QBF (with O; € {¥,3})
e Database instance I with AZ = {0, 1}
e One table with one row: true(1)
e Transform input QBF into Boolean FO query

O1x1.02x7. - - Opx,.0[Xy B true(xy), ..., X, — true(x,)]

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 10 of 38

PSprack-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not
domain independent

Example: QBF dp.—p leads to FO query dx.—true(x)

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 11 of 38

PSprack-hardness for DI Queries

The previous reduction from QBF may lead to a query that is not
domain independent

Example: QBF dp.—p leads to FO query dx.—true(x)

Better approach:

e Consider QBF O1X,.0,X5. - O, X,.¢[X1,...,X,] with ¢ in
negation normal form: negations only occur directly before
variables X; (still PSPACE-complete: exercise)

e Database instance 7 with A7 = {0, 1}

e Two tables with one row each: true(1) and false(0)

e Transform input QBF into Boolean FO query

O1x1.02x0. -+ O,x,.¢"

where ¢’ is obtained by replacing each negated variable —X;
with false(x;) and each non-negated variable X; with true(x;).

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 12 of 38

Combined Complexity of FO Query Answering

The evaluation of FO queries is PSpAaCE-complete with respect to
combined complexity.

We have actually shown something stronger:

The evaluation of FO queries is PSpACE-complete with respect to
query complexity.

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 13 of 38

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in L
~» can we do any better?

What could be better than L?
72cLCNLCcCPC...

~» we need to define circuit complexities first

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 14 of 38

Boolean Circuits

Definition
A Boolean circuit is a finite, directed, acyclic graph where

e ecach node that has no predecessors is an input node

e each node that is not an input node is one of the following
types of logical gate: AND, OR, NOT

e one or more nodes are designated output nodes

~» we will only consider Boolean circuits with exactly one output

~» propositional logic formulae are Boolean circuits with one output
and gates of fanout < 1

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 15 of 38

Example

A Boolean circuit over an input string x;x; ... x, of length n

Corresponds to formula (x; A x2) V (x; Ax3) V...V (Xp—1 AXy)
~» accepts all strings with at least two 1s

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 16 of 38

Circuits as a Model for Parallel Computation

Previous example:

) ~> n? processors working in parallel
~» computation finishes in 2 steps

e size: number of gates = total number of computing steps
e depth: longest path of gates = time for parallel computation

~» refinement of polynomial time taking parallelizability into account

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 17 of 38

Solving Problems With Circuits

Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs
~ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 18 of 38

Solving Problems With Circuits
Observation: the input size is “hard-wired” in circuits
~» each circuit only has a finite number of different inputs

~ not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition

A uniform family of Boolean circuits is a set of circuits C,, (n > 0)
that can be computed from n (usually in logarithmic space or time;
we don’t discuss the details here).

A language £ C {0, 1}* is decided by a uniform family (C,),so of
Boolean circuits if for each word w of length |w/:

we L ifand only if C|W|(W) =1l

v

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 19 of 38

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

e size of the circuit: overall number of gates
(as function of input size)

e depth of the circuit: longest path of gates
(as function of input size)

e fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition
(Chuso is a family of small-depth circuits if

e the size of C, is polynomial in n,
e the depth of C, is poly-logarithmic in n, that is, O(logk).

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 20 of 38

The Complexity Classes NC and AC

Two important types of small-depth circuits

Definition

NC* is the class of problems that can be solved by uniform families
of circuits (C,,),0 of fan-in < 2, size polynomial in n, and depth in
O(logk n).

The class NC is defined as NC = ;.o NCF.
(“Nick’s Class” named after Nicholas Pippenger by Stephen Cook)

Definition

ACK and AC are defined like NC* and NC, respectively, but for
circuits with arbitrary fan-in.
(A'is for “Alternating”: AND-OR gates alternate in such circuits)

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 21 of 38

family of polynomial size,
constant depth,

arbitrary fan-in circuits
~ in ACY

x X x5 X3 X5 . X

We can eliminate arbitrary fan-ins by using more layers of gates:

R

(n* /4 gates)

family of polynomial size,
logarithmic depth,

e bounded fan-in circuits
~ in NC!

(/2 gates)

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 22 of 38

Relationships of Circuit Complexity Classes
The previous sketch can be generalised:
NC°c AC°c NC!c AC'c...c AC*c NCH! ¢ ...

Only few inclusions are known to be proper: NC? c AC? ¢ NC!
Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

NC°c ACcNC'cLcNLCAC'c...cNCcP

Intuition:
e Problems in NC are parallelisable
e Problems in P \ NC are inherently sequential

However: it is not known if NC # P

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 23 of 38

Back to Databases ...

The evaluation of FO queries is complete for (logtime uniform) AC°
with respect to data complexity.

Proof:

e Membership: For a fixed Boolean FO query, provide a uniform
construction for a small-depth circuit based on the size of a
database

e Hardness: Show that circuits can be transformed into Boolean
FO queries in logarithmic time (not on a standard TM ... not in
this lecture)

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 24 of 38

From Query to Circuit

Assumption:
e query and database schema is fixed
e database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

® one input node for each possible database tuple (over given schema
and active domain)
~> true or false depending on whether tuple is present or not

e Recursively, for each subformula, introduce a gate for each possible
tuple (instantiation) of this formula
~» true or false depending on whether the subformula holds for this

tuple or not

e | ogical operators correspond to gate types: basic operators obvious,
V as generalised conjunction, 3 as generalised disjunction

e subformula with n free variables ~» |[adom|” gates
~» especially: |adom|® = 1 output gate for Boolean query

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 25 of 38

Example

We consider the formula
dz.(Ax.Ay.R(x,y) A S(y,2)) A =R(a, 2)
Over the database instance:
R: S:
al| a b|b
al| b b | c

Active domain: {a, b, ¢}

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages

slide 26 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

R(a,a) R(a,b) R(a,c) .. S(a,a) . S(b,a) S(b,b) S(b,c)

1 1 0 e 0 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 27 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

(R(x,y) A (R(x,) A (R(x,y) A (R(x, y) A
S, 2) S(y,2) S, 2) S(y,2))
la, a,a] la, b,a] la, b, b]

R(a,a) R(a,b) R(a,c) .. S(a,a) .. S(b,a) S(b, b) S(b,c)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 28 of 38

la,b.c] ---

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A —=R(a, 7)

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(,2)
[c]
Fy-(R(x, y) A Fy.(R(x, y) A Fy.(R(x, y) A
$(,2) S(v,2) S(y,2))

la,a] la,b] la,c]

(R(x,y) A
S, 2)

la, a,a]

(R(x,) A
S(y,2)
la, b,a]

(R(x,y) A
S(;2)
la, b, b]

(R(x,y) A
S(y,2)
la,b.c] -

R(a,a) R(a,b) R(a,c) . S(a,a) . S(b,a) S(b,b) S(b,c)

1 1 0 o 0 S 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 29 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A —=R(a, 7)

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A
$(,2)

[e]

Ay (R(x, y) A
S(v,2))

la, c]

Fy.(R(x, y) A
S(,2)

la,a]

Ay.(R(x, y) A
S(v,2)
la,b]

R(a,x)[b] E@(d%)[b]

(R(x,y) A
S, 2)

la, a,a]

(R(x,) A
S(y,2)
la, b,a]

(R(x,y) A
S(;2)
la, b, b]

(R(x,y) A
S(y,2)
la,b.c] -

R(a,x)[a) Elga, x)[al

R(a,a) R(a,b) R(a,c) . S(a,a) . S(b,a) S(b,b) S(b,c)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 30 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A —=R(a, 7)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)
[a]

(T Fy.(R(x,) A (Fx.Jy.(R(x,) A
S(y,2))) A -~R(a,)

[c]

e Fy.(R(x, y) A
$(y,2)
[a]

I Ty.(R(x,y) A T Ty.(R(x,y) A

$(,2)
[e]

Ay (R(x, y) A
S(v,2))

la, c]

Jy.(R(x,y) A
$(,2)

la,a]

Ay.(R(x, y) A
S(v,2))
la,b]

R(a,x)[b] Eﬁ(mxnb]

(R(x,y) A
S, 2)

la, a,a]

(R(x,) A
S(y,2)
la, b,a]

(R(x,y) A
S(;2)
la, b, b]

(R(x,y) A
S(y,2)
la,b,c] ---

R(a,x)lal Elga,x)[a]

R(a,a) R(a,b) R(a,c) .. S(a,a) . S(b,a) S(b, b) S(b,c)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 31 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A —=R(a, 7)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A (Fx.Jy.(R(x,) A
S(y,2))) A -~R(a,)

[e]

I Ty.(R(x,y) A T Ty.(R(x,y) A

S(,2) $(,2)
S [b] [c]
| =
= s I
= = o Ay.(R(x,y) A Ay (R(x, y) A
3, -\ = S(,2) 50,2)
= £ :n la,b] la, c]
= —
[—ﬁ = =
= =
S S
3 = (R(x,y) A (R(x, y) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
la,a,a] la,b,a] la,b,b] la,b.c] ---
R(a,a) R(a,b) R(a,c) .. S(a,a) .. S(b,a) S(b, b) S(b,c)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 32 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =R(a,)
[b]

(Fx.Jy.(R(x,) A
S(y,2)) A —R(a, 2)
[e]

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(y,2) S(y,2))
= [b] [c]
=
5 5 M
= = = Ay.(R(x, y) A Ay.(R(x, y) A
) 2\ = S(,2) 50,2)
cﬁﬁ £ :n [a,b] la, c]
= —
— = x
— =
S S
3 = (R(x,y) A R(x,) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
[a,a,a] la,b,a] [a, b, b] la,b,c] ---
R(a,a) R(a,b) R(a,c) - S(a,a) - S(b,a) S(b, b) S(b,)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 33 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =R(a,)
[b]

(Fx.Jy.(R(x,) A
S(y,2)) A —R(a, 2)
[e]

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(y,2) S(y,2))
= [b] [c]
=
5 5 M
= = = Ay.(R(x, y) A Ay.(R(x, y) A
) 2\ = S(,2) 50,2)
= £ :, [a,b] la, c]
= —
[—-5 = X
— =
S S
3 = (R(x,y) A R(x,) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
[a,a,a] la,b,a] [a, b, b] la,b,c] ---
R(a,a) R(a,b) R(a,c) - S(a,a) - S(b,a) S(b, b) S(b,)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 34 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =R(a,)
[b]

(Fx.Jy.(R(x,) A
S(y,2)) A —R(a, 2)
[e]

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(y,2) S(y,2))
= [b] [c]
=
5 5 M
= = = Ay.(R(x, y) A Ay.(R(x, y) A
) 2\ = S(,2) 50,2)
= £ :, [a,b] la, c]
= —
[—-5 = X
— =
S S
3 = (R(x,y) A R(x,) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
[a,a,a] la,b,a] [a, b, b] la,b,c] ---
R(a,a) R(a,b) R(a,c) - S(a,a) - S(b,a) S(b, b) S(b,)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 35 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =R(a,)
[b]

(Fx.Jy.(R(x,) A
S(y,2)) A —R(a, 2)
[e]

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(y,2) S(y,2))
= [b] [c]
=
5 5 M
= = = Ay.(R(x, y) A Ay.(R(x, y) A
) 2\ = S(,2) 50,2)
= £ :, [a,b] la, c]
= —
[—-5 = X
— =
S S
3 = (R(x,y) A R(x,) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
[a,a,a] la,b,a] [a, b, b] la,b,c] ---
R(a,a) R(a,b) R(a,c) - S(a,a) - S(b,a) S(b, b) S(b,)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 36 of 38

Example: dz.(Ax.dy.R(x, y) A S(v,2)) A =R(a, 2)

Fz.(Ir.Ty.(R(x,) A
S(y,2))) A ~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =~R(a,)

(T Fy.(R(x,) A
S(y,2))) A =R(a,)
[b]

(Fx.Jy.(R(x,) A
S(y,2)) A —R(a, 2)
[e]

Ty .(R(x, y) A I Ty.(R(x,y) A T Ty.(R(x,y) A

S(y,2) S(y,2))
= [b] [c]
=
5 5 M
= = = Ay.(R(x, y) A Ay.(R(x, y) A
) 2\ = S(,2) 50,2)
= £ :, [a,b] la, c]
= —
[—-5 = X
— =
S S
3 = (R(x,y) A R(x,) A (R(x,y) A (R(x,y) A
I S(,2) S(y,2) S(,2)) S(y,2)
[a,a,a] la,b,a] [a, b, b] la,b,c] ---
R(a,a) R(a,b) R(a,c) - S(a,a) - S(b,a) S(b, b) S(b,)

1 1 0 o 0 o 0 1 1
Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 37 of 38

Summary and Outlook

The evaluation of FO queries is
e PSpPACE-complete for combined complexity
e PSpPACE-complete for query complexity
e AC°-complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:
e Which other computing problems are interesting? (next lecture)
e Are there query languages with lower complexities?
e How can we study the expressiveness of query languages?

Markus Krétzsch, 4 May 2015 Foundations of Databases and Query Languages slide 38 of 38

