

FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 4: Complexity of FO Query Answering

Markus Krötzsch

TU Dresden, 4 May 2015

Overview

- 1. Introduction | Relational data model
- 2. First-order queries
- 3. Complexity of query answering
- 4. Complexity of FO query answering
- 5. Query optimization
- 6. Conjunctive queries
- 7. Limits of first-order query expressiveness
- 8. Introduction to Datalog
- 9. Implementation techniques for Datalog
- 10. Path queries
- 11. Constraints (1)
- 12. Constraints (2)
- 13. "Buffer time"
- 14. Outlook: database theory in practice

How to Measure Query Answering Complexity

Query answering as decision problem \rightsquigarrow consider Boolean queries

Various notions of complexity:

- Combined complexity (complexity w.r.t. size of query and database instance)
- Data complexity (worst case complexity for any fixed query)
- Query complexity (worst case complexity for any fixed database instance)

Various common complexity classes:

$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq ExPTIME$

An Algorithm for Evaluating FO Queries

function $\mathsf{Eval}(\varphi, I)$

- 01 switch (φ) {
- 02 **case** $p(c_1, \ldots, c_n)$: return $\langle c_1, \ldots, c_n \rangle \in p^I$
- 03 **case** $\neg \psi$: return \neg Eval(ψ , I)
- 04 **case** $\psi_1 \land \psi_2$: return Eval(ψ_1, I) \land Eval(ψ_2, I)
- 05 **case** $\exists x.\psi$:
- $\mathbf{106} \qquad \mathbf{for} \ c \in \Delta^{\mathcal{I}} \ \{$
- 07 **if** $Eval(\psi[x \mapsto c], I)$ **then** return **true**
- 08 }
- 09 return **false**

10 }

FO Algorithm Worst-Case Runtime

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- How many recursive calls of Eval are there?
 → one per subexpression: at most *m*
- Maximum depth of recursion?
 >> bounded by total number of calls: at most m
- Maximum number of iterations of for loop?
 → |Δ^I| ≤ n per recursion level
 → at most n^m iterations
- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in linear time w.r.t. n

Runtime in $m \cdot n^m \cdot n = m \cdot n^{m+1}$

Time Complexity of FO Algorithm

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Runtime in $m \cdot n^{m+1}$

Time complexity of FO query evaluation

- Combined complexity: in EXPTIME
- Data complexity (*m* is constant): in P
- Query complexity (*n* is constant): in EXPTIME

FO Algorithm Worst-Case Memory Usage

We can get better complexity bounds by looking at memory

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

- For each (recursive) call, store pointer to current subexpression of φ: log m
- For each variable in φ (at most m), store current constant assignment (as a pointer): m · log n
- Checking $\langle c_1, \ldots, c_n \rangle \in p^I$ can be done in logarithmic space w.r.t. *n*

Memory in $m \log m + m \log n + \log n = m \log m + (m + 1) \log n$

Space Complexity of FO Algorithm

Let *m* be the size of φ , and let $n = |\mathcal{I}|$ (total table sizes)

Memory in $m \log m + (m + 1) \log n$

Space complexity of FO query evaluation

- Combined complexity: in PSPACE
- Data complexity (*m* is constant): in L
- Query complexity (*n* is constant): in **PSPACE**

FO Combined Complexity

The algorithm shows that FO query evaluation is in $\ensuremath{\mathrm{PSPACE}}$. Is this the best we can get?

Hardness proof: reduce a known PSpace hard problem to FO query evaluation

FO Combined Complexity

The algorithm shows that FO query evaluation is in $\ensuremath{\mathrm{PSPACE}}$. Is this the best we can get?

Hardness proof: reduce a known $\rm PSPACE\text{-}hard$ problem to FO query evaluation \sim QBF satisfiability

Let $Q_1X_1.Q_2X_2...Q_nX_n.\varphi[X_1,...,X_n]$ be a QBF (with $Q_i \in \{\forall, \exists\}$)

- Database instance I with $\Delta^{I} = \{0, 1\}$
- One table with one row: true(1)
- Transform input QBF into Boolean FO query

 $Q_1 x_1 . Q_2 x_2 . \cdots Q_n x_n . \varphi[X_1 \mapsto \mathsf{true}(x_1), \ldots, X_n \mapsto \mathsf{true}(x_n)]$

$\operatorname{PSpace}\nolimits$ -hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p.\neg p$ leads to FO query $\exists x.\neg true(x)$

$\operatorname{PSpace}\nolimits$ -hardness for DI Queries

The previous reduction from QBF may lead to a query that is not domain independent

Example: QBF $\exists p.\neg p$ leads to FO query $\exists x.\neg$ true(x)

Better approach:

- Consider QBF Q₁X₁.Q₂X₂...Q_nX_n.φ[X₁,...,X_n] with φ in negation normal form: negations only occur directly before variables X_i (still PSPACE-complete: exercise)
- Database instance \mathcal{I} with $\Delta^{\mathcal{I}} = \{0, 1\}$
- Two tables with one row each: true(1) and false(0)
- Transform input QBF into Boolean FO query

$$\mathsf{O}_1 x_1 \, \mathsf{O}_2 x_2 \, \cdots \, \mathsf{O}_n x_n \, \varphi'$$

where φ' is obtained by replacing each negated variable $\neg X_i$ with false(x_i) and each non-negated variable X_i with true(x_i).

Markus Krötzsch, 4 May 2015

Combined Complexity of FO Query Answering

Theorem

The evaluation of FO queries is $\ensuremath{\operatorname{PSPACE}}$ -complete with respect to combined complexity.

We have actually shown something stronger:

Theorem

The evaluation of FO queries is $\ensuremath{\operatorname{PSPACE}}$ -complete with respect to query complexity.

Data Complexity of FO Query Answering

The algorithm showed that FO query evaluation is in ${\rm L}$ \rightsquigarrow can we do any better?

What could be better than L?

 $? \subseteq L \subseteq NL \subseteq P \subseteq \ldots$

→ we need to define circuit complexities first

Boolean Circuits

Definition

A Boolean circuit is a finite, directed, acyclic graph where

- · each node that has no predecessors is an input node
- each node that is not an input node is one of the following types of logical gate: AND, OR, NOT
- one or more nodes are designated output nodes

ightarrow we will only consider Boolean circuits with exactly one output

 \rightsquigarrow propositional logic formulae are Boolean circuits with one output and gates of fanout ≤ 1

Example

A Boolean circuit over an input string $x_1x_2...x_n$ of length n

Corresponds to formula $(x_1 \land x_2) \lor (x_1 \land x_3) \lor \ldots \lor (x_{n-1} \land x_n)$ \rightsquigarrow accepts all strings with at least two 1s

Markus Krötzsch, 4 May 2015

Foundations of Databases and Query Languages slide 16 of 38

Circuits as a Model for Parallel Computation

Previous example:

 $\sim n^2$ processors working in parallel \sim computation finishes in 2 steps

- size: number of gates = total number of computing steps
- depth: longest path of gates = time for parallel computation

ightarrow refinement of polynomial time taking parallelizability into account

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits \rightsquigarrow each circuit only has a finite number of different inputs \rightsquigarrow not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Solving Problems With Circuits

Observation: the input size is "hard-wired" in circuits \rightsquigarrow each circuit only has a finite number of different inputs \rightsquigarrow not a computationally interesting problem

How can we solve interesting problems with Boolean circuits?

Definition

A uniform family of Boolean circuits is a set of circuits C_n ($n \ge 0$) that can be computed from n (usually in logarithmic space or time; we don't discuss the details here).

A language $\mathcal{L} \subseteq \{0, 1\}^*$ is decided by a uniform family $(C_n)_{n \ge 0}$ of Boolean circuits if for each word *w* of length |w|:

 $w \in \mathcal{L}$ if and only if $C_{|w|}(w) = 1$

Measuring Complexity with Boolean Circuits

How to measure the computing power of Boolean circuits?

Relevant metrics:

- size of the circuit: overall number of gates (as function of input size)
- depth of the circuit: longest path of gates (as function of input size)
- fan in: two inputs per gate or any number of inputs per gate?

Important classes of circuits: small-depth circuits

Definition

 $(C_n)_{n\geq 0}$ is a family of small-depth circuits if

- the size of C_n is polynomial in n,
- the depth of C_n is poly-logarithmic in *n*, that is, $O(\log^k n)$.

The Complexity Classes NC and AC

Two important types of small-depth circuits

Definition

 NC^k is the class of problems that can be solved by uniform families of circuits $(C_n)_{n\geq 0}$ of fan-in ≤ 2 , size polynomial in n, and depth in $O(\log^k n)$.

The class NC is defined as NC = $\bigcup_{k\geq 0}$ NC^k.

("Nick's Class" named after Nicholas Pippenger by Stephen Cook)

Definition

 AC^k and AC are defined like NC^k and NC, respectively, but for circuits with arbitrary fan-in.

(A is for "Alternating": AND-OR gates alternate in such circuits)

Example

family of polynomial size, constant depth, arbitrary fan-in circuits \sim in AC^0

We can eliminate arbitrary fan-ins by using more layers of gates:

family of polynomial size, logarithmic depth, bounded fan-in circuits \sim in NC^1

Markus Krötzsch, 4 May 2015

Relationships of Circuit Complexity Classes

The previous sketch can be generalised:

 $\mathbf{NC}^0 \subseteq \mathbf{AC}^0 \subseteq \mathbf{NC}^1 \subseteq \mathbf{AC}^1 \subseteq \ldots \subseteq \mathbf{AC}^k \subseteq \mathbf{NC}^{k+1} \subseteq \ldots$

Only few inclusions are known to be proper: $NC^0 \subset AC^0 \subset NC^1$ Direct consequence of above hierarchy: NC = AC

Interesting relations to other classes:

 $NC^0 \subset AC^0 \subset NC^1 \subseteq L \subseteq NL \subseteq AC^1 \subseteq \ldots \subseteq NC \subseteq P$

Intuition:

- $\bullet\,$ Problems in ${\rm NC}$ are parallelisable
- Problems in $\mathrm{P} \setminus \mathrm{NC}$ are inherently sequential

However: it is not known if $NC \neq P$

Markus Krötzsch, 4 May 2015

Back to Databases

Theorem

The evaluation of FO queries is complete for (logtime uniform) ${\rm AC}^0$ with respect to data complexity.

Proof:

- Membership: For a fixed Boolean FO query, provide a uniform construction for a small-depth circuit based on the size of a database
- Hardness: Show that circuits can be transformed into Boolean FO queries in logarithmic time (not on a standard TM ... not in this lecture)

From Query to Circuit

Assumption:

- query and database schema is fixed
- database instance (and thus active domain) are variable

Construct circuit uniformly based on size of active domain

Sketch of construction:

• one input node for each possible database tuple (over given schema and active domain)

 \rightsquigarrow true or false depending on whether tuple is present or not

- Recursively, for each subformula, introduce a gate for each possible tuple (instantiation) of this formula
 - \rightsquigarrow true or false depending on whether the subformula holds for this tuple or not
- Logical operators correspond to gate types: basic operators obvious, ∀ as generalised conjunction, ∃ as generalised disjunction
- subformula with n free variables → |adom|ⁿ gates
 → especially: |adom|⁰ = 1 output gate for Boolean query

Example

We consider the formula

$$\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$$

Over the database instance:

Active domain: $\{a, b, c\}$

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

R(a, a)R(a, b)R(a, c)S(a, a)S(b, a)S(b, b)S(b, c)1 1 0 0 0 1 Markus Krötzsch, 4 May 2015 Foundations of Databases and Query Languages slide 27 of 38

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Example: $\exists z.(\exists x.\exists y.R(x,y) \land S(y,z)) \land \neg R(a,z)$

Summary and Outlook

The evaluation of FO queries is

- $\operatorname{PSpace}\text{-complete for combined complexity}$
- PSpace-complete for query complexity
- AC^0 -complete for data complexity

Circuit complexities help to identify highly parallelisable problems in P

Open questions:

- Which other computing problems are interesting? (next lecture)
- Are there query languages with lower complexities?
- How can we study the expressiveness of query languages?