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Review: Datalog
A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

There three equivalent ways of defining Datalog semantics:
• Proof-theoretic: What can be proven deductively?
• Operational: What can be computed bottom up?
• Model-theoretic: What is true in the least model?

Next questions:
• What can we express in this language?
• How hard is it in terms of complexity?
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Datalog and UCQs

We have seen in the exercise that UCQs can be expressed in
Datalog. { Let’s make this relationship more precise

For a Datalog program P:

• An IDB predicate R depends on an IDB predicate S if P
contains a rule with R in the head and S in the body.

• P is non-recusrive if there is no cyclic dependency.

Theorem
UCQs have the same expressivity as non-recursive Datalog.

That is: a query mapping can be expressed by some UCQ if and
only if it can be expressed by a non-recursive Datalog program.

However, Datalog can be exponentially more succinct (shorter
queries), as illustrated in exercise.
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Datalog and Domain Independence

Domain independence was considered useful for FO queries
{ results should not change if domain changes

Several solutions:

• Active domain semantics: restrict to elements mentioned in
database or query

• Domain-independent queries: restrict to query where domain
does not matter

• Safe-range queries: decidable special case of domain
independence

Our definition of Datalog uses the active domain (=Herbrand
universe) to ensure domain independence
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Safe Datalog Queries

Similar to safe-range FO queries, there are also simple syntactic
conditions that ensure domain independence for Datalog:

Definition
A Datalog rule is safe if all variables in its head also occur in its
body. A Datalog program/query is safe if all of its rules are.

Simple observations:

• safe Datalog queries are domain independent

• every Datalog query can be expressed as a safe Datalog
query . . .

• . . . and un-safe queries are not much more succinct either
(exercise)

Some texts require Datalog queries to be safe in general
but in most contexts there is no real need for this
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Complexity of Datalog

How hard is answering Datalog queries?

Recall:

• Combined complexity: based on query and database

• Data complexity: based on database; query fixed

• Query complexity: based on query; database fixed

Plan:

• First show upper bounds (outline efficient algorithm)

• Then establish matching lower bounds (reduce hard
problems)
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A Simpler Problem: Ground Progams

Let’s start with Datalog without variables
{ sets of ground rules a.k.a. propositional Horn logic program

Naive computation of T∞P :

How long does this take?

• At most |P| facts can be
derived

• Algorithm terminates with
i ≤ |P| + 1

• In each iteration, we check
each rule once (linear), and
compare its body to T i

P
(quadratic)

{ polynomial runtime

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ B` ∈ P :

06 if {B1, . . . , B`} ⊆ T i
P :

07 T i+1
P := T i+1

P ∪ {H}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P

Markus Krötzsch, 22 June 2015 Foundations of Databases and Query Languages slide 8 of 38



A Simpler Problem: Ground Progams

Let’s start with Datalog without variables
{ sets of ground rules a.k.a. propositional Horn logic program

Naive computation of T∞P :

How long does this take?

• At most |P| facts can be
derived

• Algorithm terminates with
i ≤ |P| + 1

• In each iteration, we check
each rule once (linear), and
compare its body to T i

P
(quadratic)

{ polynomial runtime

01 T0
P := ∅

02 i := 0

03 repeat :

04 T i+1
P := ∅

05 for H ← B1 ∧ . . . ∧ B` ∈ P :

06 if {B1, . . . , B`} ⊆ T i
P :

07 T i+1
P := T i+1

P ∪ {H}

08 i := i + 1

09 until T i−1
P = T i

P

10 return T i
P

Markus Krötzsch, 22 June 2015 Foundations of Databases and Query Languages slide 9 of 38



Complexity of Propositional Horn Logic

Much better algorithms exist:

Theorem (Dowling & Gallier, 1984)
For a propositional Horn logic program P, the set T∞P can be
computed in linear time.

Nevertheless, the problem is not trivial:

Theorem
For a propositional Horn logic program P and a proposition (or
ground atom) A, deciding if A ∈ T∞P is a P-complete problem.

Remark:
all P problems can be reduced to propositional Horn logic entailment
yet not all problems in P (or even in NL) can be solved in linear time!
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Datalog Complexity: Upper Bounds

A straightforward approach:

(1) Compute the grounding ground(P) of P w.r.t. the database I

(2) Compute T∞ground(P)

Complexity estimation:

• The number of constants N for grounding is linear in P and I

• A rule with m distinct variables has Nm ground instances
• Step (1) creates at most |P| · NM ground rules, where M is the

maximal number of variables in any rule in P
– ground(P) is polynomial in the size of I
– ground(P) is exponential in P

• Step (2) can be executed in linear time in the size of ground(P)

Summing up: the algorithm runs in P data complexity and in
ExpTime query and combined complexity
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Datalog Complexity

These upper bounds are tight:

Theorem
Datalog query answering is:

• ExpTime-complete for combined complexity

• ExpTime-complete for query complexity

• P-complete for data complexity

It remains to show the lower bounds.
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P-Hardness of Data Complexity

We need to reduce a P-hard problem to Datalog query answering
{ propositional Horn logic programming

We restrict to a simple form of propositional Horn logic:

• facts have the usual form H ←

• all other rules have the form H ← B1 ∧ B2

Deciding fact entailment is still P-hard (exercise)

We can store such programs in a database:

• For each fact H ←, the database has a tuple Fact(H)

• For each rule H ← B1 ∧ B2,
the database has a tuple Rule(H, B1, B2)
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P-Hardness of Data Complexity (2)

The following Datalog program acts as an interpreter for
propositional Horn logic programs:

True(x)← Fact(x)

True(x)← Rule(x, y, z) ∧ True(y) ∧ True(z)

Easy observations:

• True(A) is derived if and only if A is a consequence of the
original propositional program

• The encoding of propositional programs as databases can be
computed in logarithmic space

• The Datalog program is the same for all propositional
programs

{ Datalog query answering is P-hard for data complexity
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ExpTime-Hardness of Query Complexity
A direct proof:
Encode the computation of a deterministic Turing machine for up to
exponentially many steps

Recall that ExpTime =
⋃

k≥1 Time(2nk
)

• in our case, n = N is the number of database constants

• k is some constant

{ we need to simulate up to 2Nk
steps (and tape cells)

Main ingredients of the encoding:

• stateq(X): the TM is in state q after X steps

• head(X, Y): the TM head is at tape position Y after X steps

• symbolσ(X, Y): the tape cell at position Y holds symbol σ after
X steps

{ How to encode 2Nk
time points X and tape positions Y?
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Preparing for a Long Computation

We need to encode 2Nk
time points and tape positions

{ use binary numbers with Nk digits

So X and Y in atoms like head(X, Y) are really lists of variables
X = x1, . . . , xNk and Y = y1, . . . , yNk , and the arity of head is 2 · Nk.

Todo: define predicates that capture the order of Nk-ary binary
numbers

For each arity i ∈ {1, . . . , Nk}, we use predicates:

• succi(X, Y): the X + 1 = Y, where X and Y are i-ary numbers

• firsti(X): X is the i-ary encoding of 0

• lasti(X): X is the i-ary encoding of 2i − 1

Finally, we can define the actual order for i = Nk

• ≤i (X, Y): the X < Y, where X and Y are i-ary numbers
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Defining a Long Chain
We can define succi(X, Y), firsti(X), and lasti(X) as follows:

succ1(0, 1) first1(0) last1(1)

succi+1(0, X, 0, Y)← succi(X, Y)

succi+1(1, X, 1, Y)← succi(X, Y)

succi+1(0, X, 1, Y)← lasti(X) ∧ firsti(Y)



for X = x1, . . . , xi

and Y = y1, . . . , yi

lists of i variablesfirsti+1(0, X)← firsti(X)

lasti+1(1, X)← lasti(X)

Now for M = Nk , we define ≤M(X, Y) as the reflexive, transitive
closure of succM(X, Y):

≤M(X, X)←

≤M(X, Z)← ≤M(X, Y) ∧ succM(Y, Z)
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Initialising the Computation

We can now encode the initial configuration of the Turing Machine
for an input word σ1 · · ·σn ∈ (Σ \ {�})∗.

We write Bi for the binary encoding of a number i with M = Nk

digits, and Y = y1, . . . , yM.

stateq0 (B0) where q0 is the TM’s initial state

head(B0, B0)

symbolσi
(B0, Bi) for all i ∈ {1, . . . , n}

symbol�(B0, Y)← ≤M(Bn+1, Y)
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TM Transition and Acceptance Rules
For each transition 〈q,σ, q′,σ′, d〉 ∈ ∆, we add rules:

symbolσ′ (X
′
, Y)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

stateq′ (X′)← succM(X, X′) ∧ head(X, Y) ∧ symbolσ(X, Y) ∧ stateq(X)

Similar rules are used for inferring the new head position
(depending on d)

Further rules ensure the preservation of unaltered tape cells:

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z, Z′) ∧ ≤M(Z′, Y)

symbolσ(X′, Y)← succM(X, X′) ∧ symbolσ(X, Y) ∧

head(X, Z) ∧ succM(Z′, Z) ∧ ≤M(Y, Z′)

The TM accepts if it ever reaches the accepting state qacc:

accept()← stateqacc (X)
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Hardness Results

Lemma
A deterministic TM accepts an input in Time(2nk

) if and only if the
Datalog program defined above entails the fact accept().

We obtain ExpTime-hardness of Datalog query answering:

• The decision problem of any language in ExpTime can be
solved by a deterministic TM in Time(2nk

) for some constant k

• In particular, there are ExpTime-hard languages L with
suitable deterministic TMM and constant k

• For any input word w, we can reduce acceptance of w byM in
Time(2nk

) to entailment of accept() by a Datalog program
P(w,M, k)

• P(w,M, k) is polynomial in k and the size ofM and w
(in fact, it can be constructed in logarithmic space)
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ExpTime-Hardness: Notes

Some further remarks on our construction:

• The constructed program does not use EDB predicates
{ database can be empty

• Therefore, hardness extends to query complexity

• Using a fixed (very small) database, we could have avoided
the use of constants

• We used IDB predicates of unbounded arity
{ they are essential for the claimed hardness
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The Big Picture

Where does Datalog fit in this picture?

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable
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Expressivity of Datalog

Datalog is P-complete for data complexity:

• Entailments can be computed in polynomial time with respect
to the size of the input database I

• There is a Datalog program P, such that all problems that can
be solved in polynomial time can be reduced to the question
whether P entails some fact over a database I that can be
computed in logarithmic space.

{ So Datalog can solve all polynomial problems?

No, it can’t. Many problems in P that cannot be solved in Datalog:

• Parity: Is the number of elements in the database even?

• Connectivity: Is the input database a connected graph?

• Is the input database a chain (or linear order)?

• . . .
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Datalog Expressivity and Homomorphisms

How can we know that something is not expressible in Datalog?

A useful property: Datalog is “closed under homomorphisms”

Theorem
Consider a Datalog program P, an atom A, and databases I and
J . If P entails A over I, and there is a homomorphism µ from I to
J , then µ(P) entails µ(A) over J .

(By µ(P) and µ(A) we mean the program/atom obtained by replacing
constants in P and A, respectively, by their µ-images.)

Proof (sketch):

• Closure under homomorphism holds for conjunctive queries

• Single rule applications are like conjunctive queries

• We can show the claim for all T i
P,I

by induction on i

Markus Krötzsch, 22 June 2015 Foundations of Databases and Query Languages slide 31 of 38



Limits of Datalog Expressiveness

Closure under homomorphism shows many limits of Datalog

Special case: there is a homomorphism from I to J if I ⊂ J
{ Datalog entailments always remain true when adding more facts

• Parity can not be expressed

• Connectivity can not be expressed

• It cannot be checked if the input database is a chain

• . . .

However this criterion is not sufficient!
Datalog cannot even express all polynomial time query mappings that are
closed under homomorphism
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Capturing PTime in Datalog
How could we extend Datalog to capture all query mappings in P?
{ semipositive Datalog on an ordered domain

Definition
Semipositive Datalog, denoted Datalog⊥, extends Datalog by
allowing negated EDB atoms in rule bodies.
Datalog (semipositive or not) with a successor ordering assumes
that there are special EDB predicates succ (binary), first and last
(unary) that characterise a total order on the active domain.

Semipositive Datalog with a total order corresponds to standard
Datalog on extended databases:
• For each ground fact r(c1, . . . , cn) with I 6|= r(c1, . . . , cn), add a

new fact r̄(c1, . . . , cn) to I, using a new EDB predicate r̄
• Replace all uses of ¬r(t1, . . . , tn) in P by r̄(t1, . . . , tn)
• Define extensions for the EDB predicates succ, first and last to

characterise some (arbitrary) total order on the active domain.
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A PTime Capturing Result

Theorem
A Boolean query mapping defines a language in P if and only if it
can be described by a query in semipositive Datalog with a
successor ordering.

Example: expressing Connectivity for binary graphs

Reachable(x, x)←

Reachable(x, y)← Reachable(y, x)

Reachable(x, z)← Reachable(x, y) ∧ edge(y, z)

Connected(x)← min(x)

Connected(y)← Connected(x) ∧ succ(x, y) ∧ Reachable(x, y)

Accept()← max(x) ∧ Connected(x)

Markus Krötzsch, 22 June 2015 Foundations of Databases and Query Languages slide 35 of 38



Datalog Expressivity: Summary

The PTime capturing result is a powerful and exhaustive
characterisation for semipositive Datalog with a successor ordering

Situation much less clear for other variants of Datalog (as of 2015):

• What exactly can we express in Datalog without EDB negation
and/or successor ordering?

– Does a weaker language suffice to capture PTime? { No!
– When omitting negation, do we get query mappings closed

under homomorphism? No!1

• How about query mappings in PTime that are closed under
homomorphism?

– Does plain Datalog capture these? { No!
– Does Datalog with successor ordering capture these? { No!2

1Counterexample on previous slide
2[S. Rudolph, personal communication, 2015]
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The Big Picture

Tree CQs

k-Bounded Hypertree Width
everything (sub)polynomial

Conjunctive Queries

Arbitrary Query Mappings

First-Order Queries

Polynomial Time Query Mappings

Data compl.: AC0; everything else: NP

equivalence/containment/emptiness: undec.
Data compl.: AC0, Comb./Query compl.: PSpace

everything undecidable

Datalog Queries
Data compl.: PTime, Comb./Query compl.: ExpTime

= semipositive Datalog with a successor ordering

Note: languages that capture the same query mappings must have the
same data complexity, but may differ in combined or in query complexity
Markus Krötzsch, 22 June 2015 Foundations of Databases and Query Languages slide 37 of 38



Summary and Outlook

Non-recursive Datalog can express UCQs

Datalog is more complex than FO query answering:

• ExpTime-complete for query and combined complexity

• P-complete for data complexity

Datalog cannot express all query mappings in P

but semipositive Datalog with a successor ordering can

Next topics:

• Query containment for Datalog

• Implementation techniques for Datalog
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