Towards an Error-Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies from Data using Formal Concept Analysis

Daniel Borchmann

TU Dresden

May 23, 2013

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

May 23, 2013 1 / 17

Learn Knowledge from Data.

Learn Knowledge from Data.

Questions

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

< ≥ > < ≥ >

Learn Knowledge from Data.

Questions

• From which kind of data?

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

★ ∃ > ★ ∃

Learn Knowledge from Data.

Questions

- From which kind of data?
- Which knowledge?

∃ ► < ∃</p>

Learn Knowledge from Data.

Questions

- From which kind of data?
- Which knowledge?
- How to learn?

Learn Knowledge from Data.

Questions

• From which kind of data?

Interpretations

- Which knowledge?
- How to learn?

Learn Knowledge from Data.

Questions

- From which kind of data?
- Which knowledge?
- How to learn?

Interpretations \mathcal{EL}^{\perp} -General Concept Inclusions

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

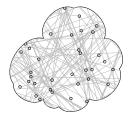
Learn Knowledge from Data.

Questions

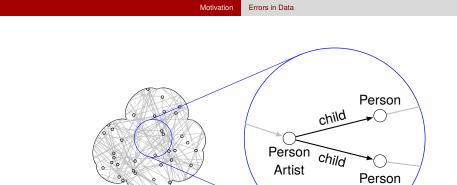
- From which kind of data?
- Which knowledge?
- How to learn?

Interpretations \mathcal{EL}^{\perp} -General Concept Inclusions Approach by Baader and Distel

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

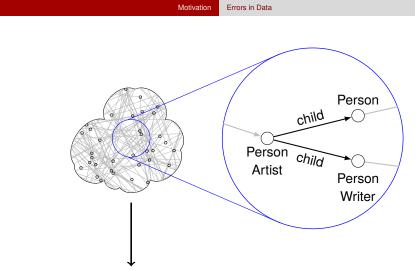


・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・



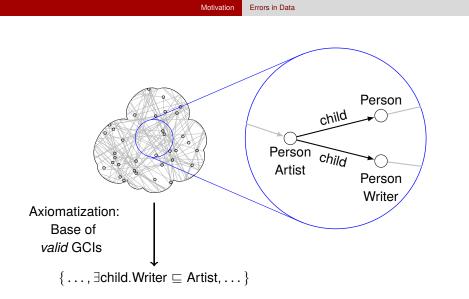
Writer

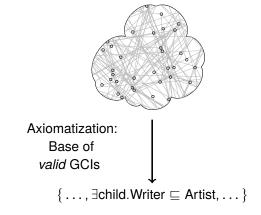
▲□▶ ▲圖▶ ▲国▶ ▲国▶



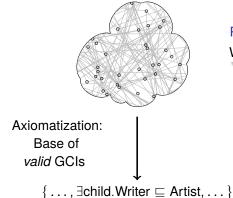
 $\{\ldots, \exists child. Writer \sqsubseteq Artist, \ldots\}$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶





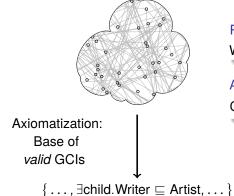
- < ≣ >



Problem

What about errors in the data?

<ロト < 回 > < 回 > < 回 >



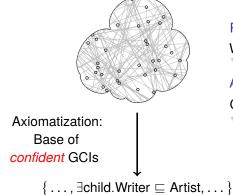
Problem

What about errors in the data?

Approach

Consider GCIs with high confidence

.∃ →

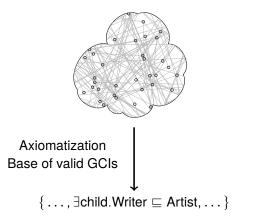


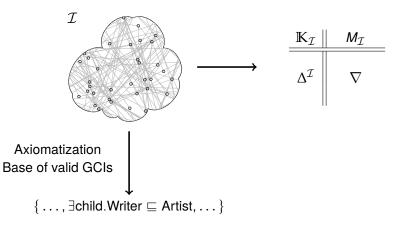
Problem

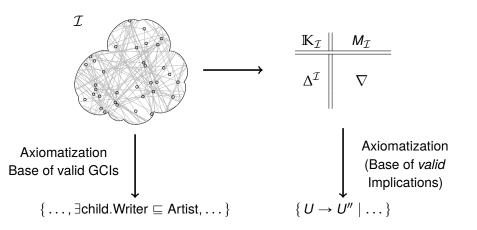
What about errors in the data?

Approach

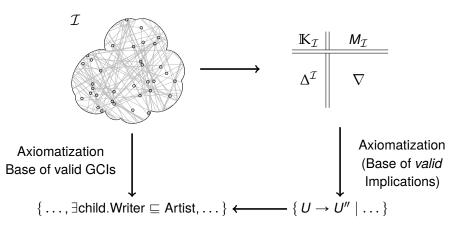
Consider GCIs with high confidence







.∃ →



Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

-

Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

• vertex set $\Delta^{\mathcal{I}}$,

∃ ► < ∃</p>

Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

- vertex set $\Delta^{\mathcal{I}}$,
- vertex labels in N_C,

Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

- vertex set $\Delta^{\mathcal{I}}$,
- vertex labels in N_C,
- edge labels in N_R.

Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

- vertex set $\Delta^{\mathcal{I}}$,
- vertex labels in N_C,
- edge labels in N_R.

Remark

Multiple labels per vertex/edge allowed

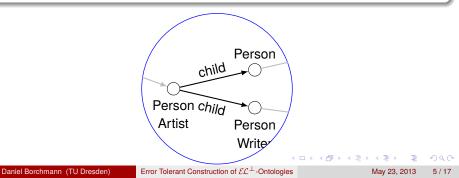
Interpretations

Vertex- and edge-labeled graphs (interpretations) ${\cal I}$ with

- vertex set $\Delta^{\mathcal{I}}$,
- vertex labels in N_C,
- edge labels in N_R.

Remark

Multiple labels per vertex/edge allowed



Definition

Consider expressions of the form

$$C ::= A \mid C \sqcap C \mid \exists r.C \mid \bot \mid \top$$

for $A \in N_C$, $r \in N_R$.

-

Definition

Consider expressions of the form

$$C ::= A \mid C \sqcap C \mid \exists r.C \mid \bot \mid \top$$

for $A \in N_C$, $r \in N_R$. *C* is called an \mathcal{EL}^{\perp} -concept description.

Definition

Consider expressions of the form

$$C ::= A \mid C \sqcap C \mid \exists r.C \mid \bot \mid \top$$

for $A \in N_C$, $r \in N_R$. *C* is called an \mathcal{EL}^{\perp} -concept description.

Definition

For
$$A \in N_C$$
, C , D two \mathcal{EL}^{\perp} -concept descriptions, $r \in N_R$:

•
$$\perp^{\mathcal{I}} = \emptyset, \top^{\mathcal{I}} = \Delta^{\mathcal{I}},$$

• $A^{\mathcal{I}}$ set of all vertices labeled with A,

•
$$(C \sqcap D)^{\mathcal{I}} := C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

•
$$(\exists r.C)^{\mathcal{I}} := \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}}, y \in C^{\mathcal{I}} \},$$

General Concept Inclusions (GCIs) are of the form

 $C \sqsubseteq D$

where *C*, *D* are \mathcal{EL}^{\perp} -concept descriptions.

General Concept Inclusions (GCIs) are of the form

 $C \sqsubseteq D$

where *C*, *D* are \mathcal{EL}^{\perp} -concept descriptions. $C \sqsubseteq D$ holds in \mathcal{I} if and only if

$$\mathcal{C}^\mathcal{I} \subseteq \mathcal{D}^\mathcal{I}$$

General Concept Inclusions (GCIs) are of the form

 $C \sqsubseteq D$

where *C*, *D* are \mathcal{EL}^{\perp} -concept descriptions. $C \sqsubseteq D$ holds in \mathcal{I} if and only if

$$\mathcal{C}^\mathcal{I} \subseteq \mathcal{D}^\mathcal{I}$$

Example

\exists child.Writer \sqsubseteq Artist

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

General Concept Inclusions (GCIs) are of the form

 $C \sqsubseteq D$

where *C*, *D* are \mathcal{EL}^{\perp} -concept descriptions. $C \sqsubseteq D$ holds in \mathcal{I} if and only if

$$\mathcal{C}^\mathcal{I} \subseteq \mathcal{D}^\mathcal{I}$$

Example

\exists child.Writer \sqsubseteq Artist

holds in ${\cal I}$ if and only if every individual having a child (-successor) which is a Writer is also an Artist.

General Concept Inclusions (GCIs) are of the form

 $C \sqsubseteq D$

where *C*, *D* are \mathcal{EL}^{\perp} -concept descriptions. $C \sqsubseteq D$ holds in \mathcal{I} if and only if

$$\mathcal{C}^\mathcal{I} \subseteq \mathcal{D}^\mathcal{I}$$

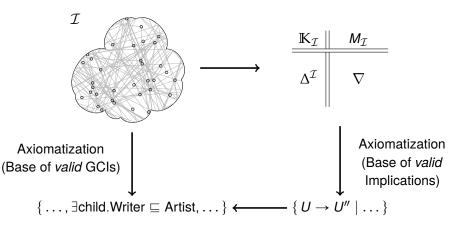
Example

 \exists child.Writer \sqsubseteq Artist

holds in ${\cal I}$ if and only if every individual having a child (-successor) which is a Writer is also an Artist.

Learning Goal

Find *finite bases* of *valid* GCIs of \mathcal{I} .



.∃ →

Outline

• Introduce model-based most-specific concept descriptions $X^{\mathcal{I}}$ for $X \subseteq \Delta^{\mathcal{I}}$

Outline

- Introduce model-based most-specific concept descriptions $X^{\mathcal{I}}$ for $X \subseteq \Delta^{\mathcal{I}}$
- Define *induced context* $\mathbb{K}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, M_{\mathcal{I}}, \nabla)$, where

$$(x, \mathcal{C}) \in
abla \iff x \in \mathcal{C}^\mathcal{I}$$

Outline

- Introduce model-based most-specific concept descriptions $X^{\mathcal{I}}$ for $X \subseteq \Delta^{\mathcal{I}}$
- Define *induced context* $\mathbb{K}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, M_{\mathcal{I}}, \nabla)$, where

$$(x, \mathcal{C}) \in
abla \iff x \in \mathcal{C}^{\mathcal{I}}$$

Theorem (Baader, Distel 2008)

If ${\mathcal L}$ is a base of ${\mathbb K}_{\mathcal I}$ then the set

$$\{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid (U \to U'') \in \mathcal{L} \}$$

is a finite base of \mathcal{I} .

• DBpedia, child-relation

- DBpedia, child-relation
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} =$ 5626, size of base 1252

- DBpedia, child-relation
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} =$ 5626, size of base 1252

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

- DBpedia, child-relation
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} =$ 5626, size of base 1252

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 *erroneous* counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

- DBpedia, child-relation
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} =$ 5626, size of base 1252

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 *erroneous* counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

Observation

$$\operatorname{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

May 23, 2013 10 / 17

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ \frac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(\mathcal{C} \sqsubseteq \mathcal{D}) := \begin{cases} 1 & \text{if } \mathcal{C}^{\mathcal{I}} = \emptyset, \\ rac{|(\mathcal{C} \sqcap \mathcal{D})^{\mathcal{I}}|}{|\mathcal{C}^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

New Goal

Axiomatize $Th_c(\mathcal{I})$, i. e. find a *finite base* of $Th_c(\mathcal{I})$.

How to find bases for $Th_c(\mathcal{I})$?

3 1 4 3

< • • • • • •

How to find bases for $Th_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

How to find bases for $Th_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

How to find bases for $Th_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

Separately axiomatize valid GCIs and properly confident GCIs

How to find bases for $Th_c(\mathcal{I})$?

Observation

Related work by M. Luxenburger on partial implications

Approach (Luxenburger)

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(C^{\mathcal{I}})^{\mathcal{I}}$ only

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \operatorname{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$.

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \operatorname{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \operatorname{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

$$\mathcal{B} \cup \mathcal{C} \models A \to A''$$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

$$\mathcal{B} \cup \mathcal{C} \models A \to A'' \to B''$$

- Separately axiomatize valid GCIs and properly confident GCIs
- Consider concept descriptions of the form $(\mathcal{C}^{\mathcal{I}})^{\mathcal{I}}$ only

The Idea in FCA

Let $\mathcal B$ base of $\mathbb K$,

$$\mathcal{C} = \{ X'' \to Y'' \mid 1 > \mathsf{conf}_{\mathbb{K}}(X'' \to Y'') \ge c \}$$

and $1 > \operatorname{conf}(A \to B) \ge c$. Then $\operatorname{conf}_{\mathbb{K}}(A \to B) = \operatorname{conf}_{\mathbb{K}}(A'' \to B'')$ and

$$\mathcal{B} \cup \mathcal{C} \models A \to A'' \to B'' \to B$$

Definition

$$\mathsf{Conf}(\mathcal{I}, c) := \{ X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}} \mid Y \subseteq X \subseteq \Delta_{\mathcal{I}}, 1 > \mathsf{conf}_{\mathcal{I}}(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \ge c \}$$

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

(日) (四) (日) (日) (日)

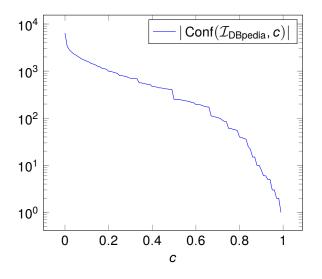
Definition

$$\operatorname{Conf}(\mathcal{I}, c) := \{ X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}} \mid Y \subseteq X \subseteq \Delta_{\mathcal{I}}, 1 > \operatorname{conf}_{\mathcal{I}}(X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \ge c \}.$$

Theorem

Let \mathcal{B} be a finite base of \mathcal{I} , and $c \in [0, 1]$. Then $\mathcal{B} \cup Conf(\mathcal{I}, c)$ is a finite base of $Th_c(\mathcal{I})$.

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies



2

Daniel Borchmann (TU Dresden)

< □ > < □ > < □ > < □ > < □ > < □ >

"Smaller" bases via another idea from Luxenburger

★ ∃ →

- "Smaller" bases via another idea from Luxenburger
- "Minimal Completion"

- "Smaller" bases via another idea from Luxenburger
- "Minimal Completion"
- Bases of $\mathsf{Th}_c(\mathcal{I})$ directly from bases of confident implications of $\mathbb{K}_{\mathcal{I}}$

- "Smaller" bases via another idea from Luxenburger
- "Minimal Completion"
- Bases of $\mathsf{Th}_c(\mathcal{I})$ directly from bases of confident implications of $\mathbb{K}_{\mathcal{I}}$

Open Questions

Daniel Borchmann (TU Dresden) Error Tolerant Construction of \mathcal{EL}^{\perp} -Ontologies

- "Smaller" bases via another idea from Luxenburger
- "Minimal Completion"
- Bases of $\mathsf{Th}_c(\mathcal{I})$ directly from bases of confident implications of $\mathbb{K}_{\mathcal{I}}$

Open Questions

Minimal bases of Th_c(I)?

- "Smaller" bases via another idea from Luxenburger
- "Minimal Completion"
- Bases of $\mathsf{Th}_c(\mathcal{I})$ directly from bases of confident implications of $\mathbb{K}_\mathcal{I}$

Open Questions

- Minimal bases of Th_c(I)?
- Exploration of Th_c(*I*)?

Thank You

-

・ロト・日本・ ・ ヨト・