
DATABASE THEORY

Lecture 2: First-order Queries

Markus Krötzsch

TU Dresden, 7 April 2016

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en
http://korrekt.org/

Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Graph Databases and Path Queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 7 April 2016 Database Theory slide 2 of 59

https://ddll.inf.tu-dresden.de/web/Database_Theory_%28SS2016%29/en

What is a Query?

The relational queries considered so far produced a result table
from a database. We generalize slightly.

Definition
• Syntax: a query expression q is a word from a query language

(algebra expression, logical expression, etc.)

• Semantics: a query mapping M[q] is a function that maps a
database instance I to a database instance M[q](I)

{ a “result table” is a result database instance with one table.

{ for some semantics, query mappings are not defined on all
database instances

Markus Krötzsch, 7 April 2016 Database Theory slide 3 of 59

Generic Queries

We only consider queries that do not depend on the concrete
names given to constants in the database:

Definition
A query q is generic if, for every bijective renaming function
µ : dom→ dom and database instance I:

µ(M[q](I)) = M[µ(q)](µ(I)).

In this case, M[q] is closed under isomorphisms.

Markus Krötzsch, 7 April 2016 Database Theory slide 4 of 59

Review: Example from Previous Lecture

Lines:

Line Type

85 bus

3 tram

F1 ferry

.

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

.

Connect:

From To Line

57 42 85

17 789 3

.

Every table has a schema:

• Lines[Line:string, Type:string]

• Stops[SID:int, Stop:string, Accessible:bool]

• Connect[From:int, To:int, Line:string]

Markus Krötzsch, 7 April 2016 Database Theory slide 5 of 59

First-order Logic as a Query Language

Idea: database instances are finite first-order interpretations
{ use first-order formulae as query language
{ use unnamed perspective (more natural here)

Examples (using schema as in previous lecture):

• Find all bus lines: Lines(x, "bus")
• Find all possible types of lines: ∃y.Lines(y, x)

• Find all lines that depart from an accessible stop:

∃ySID, yStop, yTo.
(
Stops(ySID, yStop,"true") ∧Connect(ySID, yTo, xLine)

)

Markus Krötzsch, 7 April 2016 Database Theory slide 6 of 59

First-order Logic with Equality: Syntax
Basic building blocks:

• Predicate names with an arity ≥ 0: p, q, Lines, Stops

• Variables: x, y, z

• Constants: a, b, c

• Terms are variables or constants: s, t

Formulae of first-order logic are defined as usual:

ϕ ::= p(t1, . . . , tn) | t1 ≈ t2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ

where p is an n-ary predicate, ti are terms, and x is a variable.

• An atom is a formula of the form p(t1, . . . , tn)

• A literal is an atom or a negated atom

• Occurrences of variables in the scope of a quantifier are bound;
other occurrences of variables are free

Markus Krötzsch, 7 April 2016 Database Theory slide 7 of 59

First-order Logic Syntax: Simplifications

We use the usual shortcuts and simplifications:

• flat conjunctions (ϕ1 ∧ ϕ2 ∧ ϕ3 instead of (ϕ1 ∧ (ϕ2 ∧ ϕ3)))

• flat disjunctions (similar)

• flat quantifiers (∃x, y, z.ϕ instead of ∃x.∃y.∃z.ϕ)

• ϕ→ ψ as shortcut for ¬ϕ ∨ ψ

• ϕ↔ ψ as shortcut for (ϕ→ ψ) ∧ (ψ→ ϕ)

• t1 0 t2 as shortcut for ¬(t1 ≈ t2)

But we always use parentheses to clarify nesting of ∧ and ∨:
No “ϕ1 ∧ ϕ2 ∨ ϕ3”!

Markus Krötzsch, 7 April 2016 Database Theory slide 8 of 59

First-order Logic with Equality: Semantics
First-order formulae are evaluated over interpretations 〈∆I, ·I〉,
where ∆I is the domain. To interpret formulas with free variables,
we need a variable assignment Z : Var→ ∆I.

• constants a interpreted as aI,Z = aI ∈ ∆I

• variables x interpreted as xI,Z = Z(x) ∈ ∆I

• n-ary predicates p interpreted as pI ⊆ (∆I)n

A formula ϕ can be satisfied by I and Z, written I,Z |= ϕ:

• I,Z |= p(t1, . . . , tn) if 〈tI,Z1 , . . . , tI,Zn 〉 ∈ pI

• I,Z |= t1 ≈ t2 if tI,Z1 = tI,Z2

• I,Z |= ¬ϕ if I,Z 6|= ϕ

• I,Z |= ϕ ∧ ψ if I,Z |= ϕ and I,Z |= ψ

• I,Z |= ϕ ∨ ψ if I,Z |= ϕ or I,Z |= ψ

• I,Z |= ∃x.ϕ if there is δ ∈ ∆I with I, {x 7→ δ},Z |= ϕ

• I,Z |= ∀x.ϕ if for all δ ∈ ∆I we have I, {x 7→ δ},Z |= ϕ

Markus Krötzsch, 7 April 2016 Database Theory slide 9 of 59

First-order Logic with Equality: Semantics
First-order formulae are evaluated over interpretations 〈∆I, ·I〉,
where ∆I is the domain. To interpret formulas with free variables,
we need a variable assignment Z : Var→ ∆I.

• constants a interpreted as aI,Z = aI ∈ ∆I

• variables x interpreted as xI,Z = Z(x) ∈ ∆I

• n-ary predicates p interpreted as pI ⊆ (∆I)n

A formula ϕ can be satisfied by I and Z, written I,Z |= ϕ:

• I,Z |= p(t1, . . . , tn) if 〈tI,Z1 , . . . , tI,Zn 〉 ∈ pI

• I,Z |= t1 ≈ t2 if tI,Z1 = tI,Z2

• I,Z |= ¬ϕ if I,Z 6|= ϕ

• I,Z |= ϕ ∧ ψ if I,Z |= ϕ and I,Z |= ψ

• I,Z |= ϕ ∨ ψ if I,Z |= ϕ or I,Z |= ψ

• I,Z |= ∃x.ϕ if there is δ ∈ ∆I with I, {x 7→ δ},Z |= ϕ

• I,Z |= ∀x.ϕ if for all δ ∈ ∆I we have I, {x 7→ δ},Z |= ϕ

Markus Krötzsch, 7 April 2016 Database Theory slide 10 of 59

First-order Logic Queries

Definition
An n-ary first-order query q is an expression ϕ[x1, . . . , xn] where
x1, . . . , xn are exactly the free variables of ϕ (in a specific order).

Definition
An answer to q = ϕ[x1, . . . , xn] over an interpretation I is a tuple
〈a1, . . . , an〉 of constants such that

I |= ϕ[x1/a1, . . . , xn/an]

where ϕ[x1/a1, . . . , xn/an] is ϕ with each free xi replaced by ai.

The result of q over I is the set of all answers of q over I.

Markus Krötzsch, 7 April 2016 Database Theory slide 11 of 59

Boolean Queries

A Boolean query is a query of arity 0
{ we simply write ϕ instead of ϕ[]
{ ϕ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

• I 6|= ϕ, then the result of ϕ over I is ∅ (the empty table)

• I |= ϕ, then the result of ϕ over I is {〈〉} (the unit table)

Interpreted as Boolean check with result true or false (match or no
match)

Markus Krötzsch, 7 April 2016 Database Theory slide 12 of 59

Boolean Queries

A Boolean query is a query of arity 0
{ we simply write ϕ instead of ϕ[]
{ ϕ is a closed formula (a.k.a. sentence)

What does a Boolean query return?

Two possible cases:

• I 6|= ϕ, then the result of ϕ over I is ∅ (the empty table)

• I |= ϕ, then the result of ϕ over I is {〈〉} (the unit table)

Interpreted as Boolean check with result true or false (match or no
match)

Markus Krötzsch, 7 April 2016 Database Theory slide 13 of 59

Domain Dependence

We have defined FO queries over interpretations
{ How exactly do we get from databases to interpretations?

• Constants are just interpreted as themselves: aI = a

• Predicates are interpreted according to the table contents

• But what is the domain of the interpretation?

What should the following queries return?

(1) ¬Lines(x, "bus")[x]

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

(3) ∀y.p(x, y)[x]

{ Answers depend on the interpretation domain, not just on the
database contents

Markus Krötzsch, 7 April 2016 Database Theory slide 14 of 59

Domain Dependence

We have defined FO queries over interpretations
{ How exactly do we get from databases to interpretations?

• Constants are just interpreted as themselves: aI = a

• Predicates are interpreted according to the table contents

• But what is the domain of the interpretation?

What should the following queries return?

(1) ¬Lines(x, "bus")[x]

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

(3) ∀y.p(x, y)[x]

{ Answers depend on the interpretation domain, not just on the
database contents

Markus Krötzsch, 7 April 2016 Database Theory slide 15 of 59

Natural Domain

First possible solution: the natural domain

Natural domain semantics (ND):

• fix the interpretation domain to dom (infinite)

• query answers might be infinite (not a valid result table)
{ query result undefined for such databases

Markus Krötzsch, 7 April 2016 Database Theory slide 16 of 59

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]

Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect,
otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 7 April 2016 Database Theory slide 17 of 59

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect,
otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 7 April 2016 Database Theory slide 18 of 59

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect,
otherwise empty

(3) ∀y.p(x, y)[x]

Empty on all databases

Markus Krötzsch, 7 April 2016 Database Theory slide 19 of 59

Natural Domain: Examples

Query answers under natural domain semantics:

(1) ¬Lines(x, "bus")[x]
Undefined on all databases

(2)
(
Connect(x1, "42", "85") ∨ Connect("57", x2, "85")

)
[x1, x2]

Undefined on databases with matching x1 or x2 in Connect,
otherwise empty

(3) ∀y.p(x, y)[x]
Empty on all databases

Markus Krötzsch, 7 April 2016 Database Theory slide 20 of 59

Active Domain

Alternative: restrict to constants that are really used
{ active domain

• for a database instance I, adom(I) is the set of constants
used in relations of I

• for a query q, adom(q) is the set of constants in q

• adom(I, q) = adom(I) ∪ adom(q)

Active domain semantics (AD):
consider database instance as interpretation over adom(I, q)

Markus Krötzsch, 7 April 2016 Database Theory slide 21 of 59

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]

Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]{ see board

Markus Krötzsch, 7 April 2016 Database Theory slide 22 of 59

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]
Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]{ see board

Markus Krötzsch, 7 April 2016 Database Theory slide 23 of 59

Active Domain: Examples

Query answers under active domain semantics:

(1) ¬Lines(x, "bus")[x]
Let q′ = Lines(x, "bus")[x]. The answer is adom(I, q) \M[q′](I)

(2)
(
Connect(x1, "42", "85")︸ ︷︷ ︸

ϕ1[x1]

∨Connect("57", x2, "85")︸ ︷︷ ︸
ϕ2[x2]

)
[x1, x2]

The answer is M[ϕ1](I) × adom(I, q) ∪ adom(I, q) ×M[ϕ2](I)

(3) ∀y.p(x, y)[x]{ see board

Markus Krötzsch, 7 April 2016 Database Theory slide 24 of 59

Domain Independence

Observation: some queries do not depend on the domain

• Stops(x, y, "true")[x, y]

• (x ≈ a)[x]

• p(x) ∧ ¬q(x)[x]

• ∀y.(q(x, y)→ p(x, y))[x] (exercise: why?)

In contrast, all example queries on the previous few slides are not
domain independent

Domain independent semantics (DI):

consider only domain independent queries
use any domain adom(I, q) ⊆ ∆I ⊆ dom for interpretation

Markus Krötzsch, 7 April 2016 Database Theory slide 25 of 59

How to Compare Query Languages

We have seen three ways of defining FO query semantics
{ how to compare them?

Definition
The set of query mappings that can be described in a query
language L is denoted QM(L).

• L1 is subsumed by L2, written L1 v L2, if QM(L1)⊆QM(L2)

• L1 is equivalent to L2, written L1 ≡ L2, if QM(L1) = QM(L2)

We will also compare query languages under named perspective with
query languages under unnamed perspective.
This is possible since there is an easy one-to-one correspondence
between query mappings of either kind (see exercise).

Markus Krötzsch, 7 April 2016 Database Theory slide 26 of 59

How to Compare Query Languages

We have seen three ways of defining FO query semantics
{ how to compare them?

Definition
The set of query mappings that can be described in a query
language L is denoted QM(L).

• L1 is subsumed by L2, written L1 v L2, if QM(L1)⊆QM(L2)

• L1 is equivalent to L2, written L1 ≡ L2, if QM(L1) = QM(L2)

We will also compare query languages under named perspective with
query languages under unnamed perspective.
This is possible since there is an easy one-to-one correspondence
between query mappings of either kind (see exercise).

Markus Krötzsch, 7 April 2016 Database Theory slide 27 of 59

Equivalence of Relational Query Languages

Theorem
The following query languages are equivalent:

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

This holds under named and under unnamed perspective.

To prove it, we will show:

RAnamed v DIunnamed v ADunnamed v RAnamed

Markus Krötzsch, 7 April 2016 Database Theory slide 28 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an]

, then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 29 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}

, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 30 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′)

, then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 31 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′)

, then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 32 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′

, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 33 of 59

RAnamed v DIunnamed

For a given RA query q[a1, . . . , an],
we recursively construct a DI query ϕq[xa1 , . . . , xan] as follows:

We assume without loss of generality that all attribute lists in RA
expressions respect the global order of attributes.

• if q = R with signature R[a1, . . . , an], then ϕq = R(xa1 , . . . , xan)

• if n = 1 and q = {{a1 7→ c}}, then ϕq = (xa1 ≈ c)

• if q = σai=c(q′), then ϕq = ϕq′ ∧ (xai ≈ c)

• if q = σai=aj (q
′), then ϕq = ϕq′ ∧ (xai ≈ xaj)

• if q = δb1,...,bn→a1,...,an q′, then

ϕq = ∃yb1 , . . . , ybn .(xa1 ≈ yb1) ∧ . . . ∧ (xan ≈ ybn) ∧ ϕq′ [ya1 , . . . , yan]
(Here we assume that the a1, . . . , an in δb1,...,bn→a1,...,an are written in the order of attributes,
whereas b1, . . . , bn might be in another order. ϕq′ [ya1 , . . . , yan] is like ϕq′ but using variables yai .)

Markus Krötzsch, 7 April 2016 Database Theory slide 34 of 59

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck}

,

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2 then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2 then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2 then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and
equivalent to q
{ exercise

Markus Krötzsch, 7 April 2016 Database Theory slide 35 of 59

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2

then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2 then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2 then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and
equivalent to q
{ exercise

Markus Krötzsch, 7 April 2016 Database Theory slide 36 of 59

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2 then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2

then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2 then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and
equivalent to q
{ exercise

Markus Krötzsch, 7 April 2016 Database Theory slide 37 of 59

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2 then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2 then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2

then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and
equivalent to q
{ exercise

Markus Krötzsch, 7 April 2016 Database Theory slide 38 of 59

RAnamed v DIunnamed (cont’d)

Remaining cases:

• if q = πa1,...,an (q′) for a subquery q′[b1, . . . , bm] with

{b1, . . . , bm} = {a1, . . . , an} ∪ {c1, . . . , ck},

then ϕq = ∃xc1 , . . . , xck .ϕq′

• if q = q1 ./ q2 then ϕq = ϕq1 ∧ ϕq2

• if q = q1 ∪ q2 then ϕq = ϕq1 ∨ ϕq2

• if q = q1 − q2 then ϕq = ϕq1 ∧ ¬ϕq2

One can show that ϕq[xa1 , . . . , xan] is domain independent and
equivalent to q
{ exercise

Markus Krötzsch, 7 April 2016 Database Theory slide 39 of 59

DIunnamed v ADunnamed

This is easy to see

:

• Consider an FO query q that is domain independent

• The semantics of q is the same for any domain
adom ⊆ ∆I ⊆ dom

• In particular, the semantics of q is the same under active
domain semantics

• Hence, for every DI query, there is an equivalent AD query

Markus Krötzsch, 7 April 2016 Database Theory slide 40 of 59

DIunnamed v ADunnamed

This is easy to see:

• Consider an FO query q that is domain independent

• The semantics of q is the same for any domain
adom ⊆ ∆I ⊆ dom

• In particular, the semantics of q is the same under active
domain semantics

• Hence, for every DI query, there is an equivalent AD query

Markus Krötzsch, 7 April 2016 Database Theory slide 41 of 59

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA
expression Ea,adom such that Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables
x1 = tv1 , . . . , xn = tvn and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(σaw1 =c1 (. . . σawk =ck (R) . . .))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 7 April 2016 Database Theory slide 42 of 59

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA
expression Ea,adom such that Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables
x1 = tv1 , . . . , xn = tvn and constants c1 = tw1 , . . . , ck = twk ,

then Eϕ = δav1 ...avn→ax1 ...axn
(σaw1 =c1 (. . . σawk =ck (R) . . .))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 7 April 2016 Database Theory slide 43 of 59

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA
expression Ea,adom such that Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables
x1 = tv1 , . . . , xn = tvn and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(σaw1 =c1 (. . . σawk =ck (R) . . .))

• if ϕ = (x ≈ c)

, then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 7 April 2016 Database Theory slide 44 of 59

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA
expression Ea,adom such that Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables
x1 = tv1 , . . . , xn = tvn and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(σaw1 =c1 (. . . σawk =ck (R) . . .))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y)

, then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 7 April 2016 Database Theory slide 45 of 59

ADunnamed v RAnamed

Consider an AD query q = ϕ[x1, . . . , xn].

For an arbitrary attribute name a, we can construct an RA
expression Ea,adom such that Ea,adom(I) = {{a 7→ c} | c ∈ adom(I, q)}
{ exercise

For every variable x, we use a distinct attribute name ax

• if ϕ = R(t1, . . . , tm) with signature R[a1, . . . , am] with variables
x1 = tv1 , . . . , xn = tvn and constants c1 = tw1 , . . . , ck = twk ,
then Eϕ = δav1 ...avn→ax1 ...axn

(σaw1 =c1 (. . . σawk =ck (R) . . .))

• if ϕ = (x ≈ c), then Eϕ = {{ax 7→ c}}

• if ϕ = (x ≈ y), then Eϕ = σax=ay (Eax,adom ./ Eay,adom)

• other forms of equality atoms are similar

Markus Krötzsch, 7 April 2016 Database Theory slide 46 of 59

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ

, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For
this to be equivalent to the query ϕ[x1, . . . , xn], we must choose the
attribute names such that their global order is ax1 , . . . , axn . This is clearly
possible, since the names are arbitrary and we have infinitely many names
available.

Markus Krötzsch, 7 April 2016 Database Theory slide 47 of 59

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2

, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For
this to be equivalent to the query ϕ[x1, . . . , xn], we must choose the
attribute names such that their global order is ax1 , . . . , axn . This is clearly
possible, since the names are arbitrary and we have infinitely many names
available.

Markus Krötzsch, 7 April 2016 Database Theory slide 48 of 59

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn

,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For
this to be equivalent to the query ϕ[x1, . . . , xn], we must choose the
attribute names such that their global order is ax1 , . . . , axn . This is clearly
possible, since the names are arbitrary and we have infinitely many names
available.

Markus Krötzsch, 7 April 2016 Database Theory slide 49 of 59

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For
this to be equivalent to the query ϕ[x1, . . . , xn], we must choose the
attribute names such that their global order is ax1 , . . . , axn . This is clearly
possible, since the names are arbitrary and we have infinitely many names
available.

Markus Krötzsch, 7 April 2016 Database Theory slide 50 of 59

ADunnamed v RAnamed (cont’d)

Remaining cases:

• if ϕ = ¬ψ, then Eϕ = (Eax1 ,adom .// Eaxn ,adom) − Eψ

• if ϕ = ϕ1 ∧ ϕ2, then Eϕ = Eϕ1 ./ Eϕ2

• if ϕ = ∃y.ψ where ψ has free variables y, x1, . . . , xn,
then Eϕ = πax1 ,...,axn

Eψ

The cases for ∨ and ∀ can be constructed from the above
{ exercise

A note on order: The translation yields an expression Eϕ[ax1 , . . . , axn]. For
this to be equivalent to the query ϕ[x1, . . . , xn], we must choose the
attribute names such that their global order is ax1 , . . . , axn . This is clearly
possible, since the names are arbitrary and we have infinitely many names
available.

Markus Krötzsch, 7 April 2016 Database Theory slide 51 of 59

How to find DI queries?

Domain independent queries are arguably most intuitive, since
their result does not depend on special assumptions.

{ How can we check if a query is in DI?

Unfortunately, we can’t:

Theorem
Given a FO query q, it is undecidable if q ∈ DI.

{ find decidable sufficient conditions for a query to be in DI

Markus Krötzsch, 7 April 2016 Database Theory slide 52 of 59

How to find DI queries?

Domain independent queries are arguably most intuitive, since
their result does not depend on special assumptions.

{ How can we check if a query is in DI? Unfortunately, we can’t:

Theorem
Given a FO query q, it is undecidable if q ∈ DI.

{ find decidable sufficient conditions for a query to be in DI

Markus Krötzsch, 7 April 2016 Database Theory slide 53 of 59

A Normal Form for Queries

We first define a normal form for FO queries:
Safe-Range Normal Form (SRNF)

• Rename variables apart (distinct quantifiers bind distinct
variables, bound variables distinct from free variables)

• Eliminate all universal quantifiers: ∀y.ψ 7→ ¬∃y.¬ψ
• Push negations inwards:

– ¬(ϕ ∧ ψ) 7→ (¬ϕ ∨ ¬ψ)
– ¬(ϕ ∨ ψ) 7→ (¬ϕ ∧ ¬ψ)
– ¬¬ψ 7→ ψ

Markus Krötzsch, 7 April 2016 Database Theory slide 54 of 59

Safe-Range Queries

Let ϕ be a formula in SRNF. The set rr(ϕ) of range-restricted
variables of ϕ is defined recursively:

rr(R(t1, . . . , tn)) = {x | x a variable among the t1, . . . , tn}

rr(x ≈ a) = {x}

rr(x ≈ y) = ∅

rr(ϕ1 ∧ ϕ2) =

rr(ϕ1) ∪ {x, y} if ϕ2 = (x≈ y) and {x, y} ∩ rr(ϕ1) , ∅

rr(ϕ1) ∪ rr(ϕ2) otherwise

rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

rr(∃y.ψ) =

rr(ψ) \ {y} if y ∈ rr(ψ)

throw new NotSafeException() if y < rr(ψ)

rr(¬ψ) = ∅ if rr(ψ) is defined (no exception)

Markus Krötzsch, 7 April 2016 Database Theory slide 55 of 59

Safe-Range Queries

Definition
An FO query q = ϕ[x1, . . . , xn] is a safe-range query if

rr(SRNF(ϕ)) = {x1, . . . , xn}.

Safe-range queries are domain independent.

One can show a much stronger result:

Theorem
The following query languages are equivalent:

• Safe-range queries SR

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

Markus Krötzsch, 7 April 2016 Database Theory slide 56 of 59

Safe-Range Queries

Definition
An FO query q = ϕ[x1, . . . , xn] is a safe-range query if

rr(SRNF(ϕ)) = {x1, . . . , xn}.

Safe-range queries are domain independent.
One can show a much stronger result:

Theorem
The following query languages are equivalent:

• Safe-range queries SR

• Relational algebra RA

• FO queries under active domain semantics AD

• Domain independent FO queries DI

Markus Krötzsch, 7 April 2016 Database Theory slide 57 of 59

Tuple-Relational Calculus

There are more equivalent ways to define a relational query
language

Example: Codd’s tuple calculus

• Based on named perspective

• Use first-order logic, but variables range over sorted tuples
(rows) instead of values

• Use expressions like x : From,To,Line to declare sorts of
variables in queries

• Use expressions like x.From to access a specific value of a tuple
• Example: Find all lines that depart from an accessible stop

{x : Line | ∃y : SID,Stop,Accessible.(Stops(y) ∧ y.Accessible ≈ "true"

∧ ∃z : From,To,Line.(Connect(z) ∧ z.From ≈ y.SID

∧ z.Line ≈ x.Line))}

Markus Krötzsch, 7 April 2016 Database Theory slide 58 of 59

Summary and Outlook

First-order logic gives rise to a relational query language

The problem of domain dependence can be solved in several ways

All common definitions lead to equivalent calculi
{ “relational calculus”

Open questions:

• How hard is it to actually answer such queries? (next lecture)

• How can we study the expressiveness of query languages?

• Are there interesting query languages that are not equivalent
to RA?

Markus Krötzsch, 7 April 2016 Database Theory slide 59 of 59

