Learning Terminological Knowledge with High Confidence from Erroneous Data

Daniel Borchmann

daniel.borchmann@mailbox.tu-dresden.de

Research Training Group 1763 "QuantLA"

16. June 2014

Goal

Use description logic ontologies to represent knowledge of certain domains

Goal

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Goal

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Approach

Learn ontologies from domain data

Goal

Use description logic ontologies to represent knowledge of certain domains

Problem

How to obtain these ontologies?

Approach

Learn first versions of ontologies from domain data

Goal

Extract terminological knowledge from factual knowledge.

Goal

Extract terminological knowledge from factual knowledge.

Goal

Extract terminological knowledge from factual knowledge.

Goal

Extract terminological knowledge from interpretations.

Goal

Extract finite bases of GCIs from interpretations.

Experiment

Experiment

• DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{DBpedia}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

$Criminal \sqsubseteq Person$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{DBpedia}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal}\sqsubseteq \text{Person}\\ \text{Criminal}\sqcap \exists \text{child.Politician}\sqsubseteq \bot \end{array}$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{DBpedia}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal}\sqsubseteq \text{Person}\\ \text{Criminal}\sqcap \exists \text{child}.\text{Politician}\sqsubseteq \bot\\ \text{Person}\sqcap \exists \text{child}.\text{Criminal}\sqsubseteq \text{Criminal}\\ \end{array}$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{DBpedia}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal}\sqsubseteq \text{Person}\\ \text{Criminal}\sqcap \exists \text{child}. \text{Politician}\sqsubseteq \bot\\ \text{Person}\sqcap \exists \text{child}. \text{Criminal}\sqsubseteq \text{Criminal}\\ \end{array}$

Observation

 $\exists child. \top \sqsubseteq Person$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{DBpedia}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal}\sqsubseteq \text{Person}\\ \text{Criminal}\sqcap \exists \text{child}. \text{Politician}\sqsubseteq \bot\\ \text{Person}\sqcap \exists \text{child}. \text{Criminal}\sqsubseteq \text{Criminal}\\ \end{array}$

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal} \sqsubseteq \text{Person} \\ \text{Criminal} \sqcap \exists \text{child}. \text{Politician} \sqsubseteq \bot \\ \text{Person} \sqcap \exists \text{child}. \text{Criminal} \sqsubseteq \text{Criminal} \end{array}$

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

Experiment

- DBpedia, child-relation $\rightsquigarrow \mathcal{I}_{\text{DBpedia}}$
- $\Delta^{\mathcal{I}_{\text{DBpedia}}} = 5626$, size of base 1252

Some Results

 $\begin{array}{l} \text{Criminal} \sqsubseteq \text{Person} \\ \text{Criminal} \sqcap \exists \text{child}. \text{Politician} \sqsubseteq \bot \\ \text{Person} \sqcap \exists \text{child}. \text{Criminal} \sqsubseteq \text{Criminal} \end{array}$

Observation

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, because of 4 erroneous counterexamples: Teresa_Carpio, Charles_Heung, Adam_Cheng, Lydia_Shum.

Confidence

Observation

$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$

Observation

$$\mathsf{conf}_{\mathcal{I}_{\mathsf{DBpedia}}}(\exists \mathsf{child}.\top \sqsubseteq \mathsf{Person}) = \frac{2547}{2551}$$

Approach

Consider GCIs with high confidence in $\mathcal{I}_{\text{DBpedia}}$ as well.

Formal Concept Analysis

