SAT Problems

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden Germany

- Propositional Logic
- Semantics
- Propositional SAT Problems
- Conjunctive Normal Form
- Resolution
- Examples

Propositional Logic

- Definition An alphabet of propositional logic consists of
$\triangleright \mathbf{a}$ (countably) infinite set \mathcal{R} of propositional variables
\triangleright the set $\{\neg / 1, \wedge / 2, \vee / 2, \rightarrow / 2, \leftrightarrow / 2\}$ of connectives and
\triangleright the special characters "(" and ")"
- \cdot / n denotes the arity of -
- Different alphabets of propositional logic differ in \mathcal{R} and, hence, alphabets are usually specified by specifying \mathcal{R}
- In this lecture, \mathcal{R} is usually \mathbb{N}^{+}

Propositional Formulas

- Definition An atomic formula, briefly called atom, is a propositional variable
- Definition The set of propositional formulas is the smallest set $\mathcal{L}(\mathcal{R})$ of strings over an alphabet \mathcal{R} of propositional logic with the following properties:

1 If F is an atomic formula then $F \in \mathcal{L}(\mathcal{R})$
2 If $F \in \mathcal{L}(\mathcal{R})$ then $\neg F \in \mathcal{L}(\mathcal{R})$
3 If $\circ / 2$ is a binary connective and $F, G \in \mathcal{L}(\mathcal{R})$ then $(F \circ G) \in \mathcal{L}(\mathcal{R})$

- Definition A literal is an atom or a negated atom;

The complement \bar{L} of a literal L is defined as follows:
\triangleright If L is an atom A then $\bar{L}=\neg A$
\triangleright if L is a negated atom $\neg A$ then $\bar{L}=A$
A pair L, \bar{L} of literals is said to be complementary

Notations and Conventions

- A (possibly indexed) denotes an atom
$L \quad$ (possibly indexed) denotes a literal
$F, G, H \quad$ (possibly indexed) denote propositional formulas
$\mathcal{F}, \mathcal{G}, \mathcal{H}$ denote sets of propositional formulas
- It is sometimes convenient to write $-n$ instead of $\neg n$, where $n \in \mathbb{N}^{+}$
- Let S be a set of literals
$\triangleright \bar{S}=\{\bar{L} \mid L \in S\}$
$\triangleright \overline{\boldsymbol{S}}$ is sometimes called the complement of \boldsymbol{S}

Semantics

- The set of truth values is the set $\{\top, \perp\}$
- We consider the following functions on $\{\top, \perp\}$:
\triangleright Negation $\neg^{*} / 1$
\triangleright Conjunction $\wedge^{*} / \mathbf{2}$
\triangleright Disjunction $\mathrm{V}^{*} / \mathbf{2}$
\triangleright Implication $\rightarrow^{*} / \mathbf{2}$
\triangleright Equivalence $\leftrightarrow^{*} / \mathbf{2}$

		\neg^{*}	\wedge^{*}	\vee^{*}	\rightarrow^{*}	\leftrightarrow^{*}
\top	\top	\perp	\top	\top	\top	\top
\top	\perp	\perp	\perp	\top	\perp	\perp
\perp	\top	\top	\perp	\top	\top	\perp
\perp	\perp	\top	\perp	\perp	\top	\top

Interpretations

- Definition An interpretation / consists of the set $\{\top, \perp\}$ and a mapping $\cdot^{I}: \mathcal{L}(\mathcal{R}) \rightarrow\{\top, \perp\}$ with:

$$
[F]^{\prime}= \begin{cases}\neg^{*}[G]^{\prime} & \text { if } F \text { is of the form } \neg G \\ \left(\left[G_{1}\right]^{\prime} \circ *\left[G_{2}\right]^{\prime}\right) & \text { if } F \text { is of the form }\left(G_{1} \circ G_{2}\right)\end{cases}
$$

- Given $F \in \mathcal{L}(\mathcal{R})$
- Let $\mathcal{R}_{F}=\{\boldsymbol{A} \in \mathcal{R} \mid \boldsymbol{A}$ occurs in $F\}$ and $n=\left|\mathcal{R}_{F}\right|$
- Definition Two interpretations I and J are equal for F, in symbols $I \simeq_{F} J$, iff for all $A \in \mathcal{R}_{F}$ we find $A^{\prime}=A^{J}$
- Proposition \simeq_{F} is an equivalence relation defining 2^{n} different equivalence classes on the set of all interpretations of $\mathcal{L}(\mathcal{R})$
- For each of the equivalence classes defined by \simeq_{F} we can choose as representative the interpretation I with $A^{\prime}=\perp$ for all $A \in \mathcal{R} \backslash \mathcal{R}_{F}$
- Such an interpretation I is called an interpretation for F
- The set of interpretations for F is finite; its cardinality is $\mathbf{2}^{\boldsymbol{n}}$

Models

- Definition An interpretation / for \boldsymbol{F} is called model for $\boldsymbol{F}(I \models F) \quad$ iff $\quad[F]^{I}=\top$
- Definition

F is satisfiable	iff	there is a model for F
F is unsatisfiable	iff	there is no model for F
F is valid	iff	all interpretations for F are models for F
F is falsifiable	iff	some interpretation for F is not a model for F

- Definition An interpretation I is called model for a set \mathcal{G} of formulas $(I \models \mathcal{G})$ iff I is a model for all $F \in \mathcal{G}$
- The notions of satisfiability, unsatisfiability, validity and falsifiability can be extended to sets of formulas in the obvious way

Representation of Interpretations

- An interpretation $/$ for F is uniquely defined by specifying how $/$ acts on \mathcal{R}_{F}
$\triangleright I$ can be represented by a sequence \hat{l} of literals from $\mathcal{R}_{F} \cup \overline{\mathcal{R}_{F}}$ such that $L \in \hat{I}$ iff $L^{\prime}=\top$
- Note
$\triangleright I$ is a mapping
\# î does not contain a complementary pair of literals
$\triangleright I$ is a total mapping
\Rightarrow For each $\boldsymbol{A} \in \mathcal{R}_{F}$ either $\boldsymbol{A} \in \hat{I}$ or $\overline{\boldsymbol{A}} \in \hat{I}$ but not both
\triangleright In the sequel, we will identify I with \hat{I}.
- Definition Let J be a sequence of literals from $\mathcal{R}_{F} \cup \overline{\mathcal{R}_{F}}$ such that J does not contain a complementary pair; J is a partial interpretation for F iff there is an $A \in \mathcal{R}_{F}$ such that neither $A \in J$ nor $\bar{A} \in J$

Some Additional Notations and Conventions

- I and J (possibly indexed) denote (partial) interpretations
- We often write F^{\prime} instead of $[F]^{\prime}$
- We define the following precedence hierarchy among connectives:

$$
\neg \succ\{\vee, \wedge\} \succ \rightarrow \succ \leftrightarrow
$$

- We sometimes omit parentheses taking into account that conjunction and disjunction are associative and commutative
- Let \boldsymbol{J} be a (partial) interpretation for F and \boldsymbol{C} a disjunction of literals $\triangleright J$ satisfies $C(J \models C)$ iff J contains a literal occurring as disjunct in C $\triangleright J$ falsifies $C(J \not \vDash C)$ iff for each disjunct L of C we find $\bar{L} \in J$
- Let J be a sequence of literals; It it sometimes convenient to represent J in the form I^{\prime}, L, I, where L is a literal occurring in J and I^{\prime}, I are the subsequences occurring in J before and after L, respectively

Propositional Satisfiability Problems

- Definition A propositional satisfiability problem, briefly called SAT, consists of a formula $F \in \mathcal{L}(\mathcal{R})$, and is the problem to decide whether F is satisfiable
- SAT is a combinatorial decision problem
\triangleright Decision variant yes/no answer
\triangleright Search variant find a model if F is satisfiable
\triangleright All models variant find all models if F is satisfiable

A Simple SAT Instance

- Let $F=1$

$$
\begin{aligned}
& \wedge(1 \vee 2) \\
& \wedge(1 \rightarrow 3) \\
& \wedge(1 \wedge 3 \rightarrow 4) \\
& \wedge(5 \vee 6) \\
& \wedge(5 \rightarrow 7) \\
& \wedge(\overline{5} \vee 8) \\
& \wedge(\overline{7} \vee \overline{8})
\end{aligned}
$$

- $(1,2,3,4, \overline{5}, 6, \overline{7}, \overline{8})$ is a model for F
- Hence, F is satisfiable
- How can we find such a model?

Model Finding - First Ideas

- Reconsider $F=1$

$$
\begin{array}{ll}
\wedge(1 \vee 2) & C_{2} \\
\wedge(1 \rightarrow 3) & C_{3} \tag{3}\\
\wedge(1 \wedge 3 \rightarrow 4) & C_{4} \\
\wedge(5 \vee 6) & C_{5}
\end{array}
$$

$$
\wedge(5 \rightarrow 7)
$$

C_{6}

$$
\wedge(\overline{5} \vee 8)
$$

$$
\wedge(\overline{7} \vee \overline{8})
$$

$\wedge(7 \vee 8) \quad C_{8}$
\triangleright Because C_{1} we set $J:=(1)$ and thus $J \vDash C_{1}$.
\triangleright Because $1 \in J$ we find $J \models C_{2}$.
\triangleright Because $1 \in J$ and C_{3} we set $J:=(1,3)$ and thus $J \models C_{3}$
\triangleright Because 1,3 \mathcal{J} and C_{4} we set $J:=(1,3,4)$, and thus $J \models C_{4}$
\triangleright None of $C_{5}-C_{8}$ forces the addition of a literal; we choose $J:=(1,3,4,5)$
\triangleright Because $5 \in J$ we find $J \models C_{5}$
\triangleright Because $5 \in J$ and C_{6} we set $J:=(1.3 .4,5 \dot{5}, 7)$, and thus $J \vDash C_{6}$
\triangleright Because $5 \in J$ and C_{7} we set $J:=(1,3,4, \dot{5}, 7,8)$ and thus $J \vDash C_{7}$
\triangleright Because 7, $8 \in J$ we find $J \not \vDash C_{8}$; we have a conflict

Model Finding - First Ideas Continued

- Reconsider $F=1$
$\wedge(1 \vee 2)$ C_{2}
$\wedge(1 \rightarrow 3)$ C_{3}
$\wedge(1 \wedge 3 \rightarrow 4) \quad C_{4}$ $\wedge(5 \vee 6) \quad C_{5}$ $\wedge(5 \rightarrow 7) \quad C_{6}$ $\wedge(5 \vee 8) \quad C_{7}$
$\wedge(\overline{7} \vee \overline{8})$. C_{8}
\triangleright Recall $J:=(1,3,4,5,7,8)$ has led to a conflict
\triangleright We backtrack and set $J:=(1,3,4, \overline{5})$
\triangleright Because $\overline{5} \in J$ and C_{5} we set $J:=(1,3,4, \overline{5}, 6)$ and thus $J \vDash C_{5}$
\triangleright Because $\overline{5} \in J$ we find $J \models C_{6}$ and $J \models C_{7}$
\triangleright In order to satisfy C_{8} we choose $J:=(1,3,4, \overline{5}, 6, \dot{\overline{7}})$ and thus $J \vDash C_{8}$
$\triangleright J$ is turned into a total interpretation by adding $2, \overline{8}$; the choice was arbitrary; we could have added $\overline{2}, \overline{8}$ or 2,8 or $\overline{2}, 8$

Remarks and Notational Conventions

- Literals marked with a dot are called decision literals all others are called propagation literals
- If J is a partial interpretation then J, L is the interpretation obtained by adding L to J
\triangleright Note J,L may be total

Decision Levels

- Partial interpretations will sometimes be written in the form

$$
P_{0}, \dot{L_{1}}, P_{1}, \ldots, \dot{L_{k}}, P_{k}
$$

where $P_{i}, 1 \leq i \leq k$, are sequences of propagation literals
\triangleright The decision literals partition the elements of the interpretation into decision levels
\triangleright Literals occurring in $L_{i}, \boldsymbol{P}_{\boldsymbol{i}}$ are assigned decision level \boldsymbol{i}

- Likewise,

$$
J, \dot{L}, P
$$

denotes a partial interpretation, where
$\triangleright J$ is a partial interpretation
$\triangleright \dot{L}$ is decision literal and
$\triangleright P$ is a sequence of propagation literals
Note that \dot{L} is the decision literal with the highest level in J, \dot{L}, P

Subformulas

- Definition Let F be a propositional formula; The set of subformulas of F is the smallest set of formulas $\mathcal{S}(F)$ satisfying the following conditions:

1. $F \in \mathcal{S}(F)$
2. If $\neg \boldsymbol{G} \in \mathcal{S}(F)$, then $\boldsymbol{G} \in \mathcal{S}(F)$
3. If $G_{1} \circ G_{2} \in \mathcal{S}(F)$, then $G_{1}, G_{2} \in \mathcal{S}(F)$

- Example

$$
\begin{aligned}
& \mathcal{S}\left(\neg\left(\left(p_{1} \rightarrow p_{2}\right) \vee p_{1}\right)\right) \\
& =\left\{\neg\left(\left(p_{1} \rightarrow p_{2}\right) \vee p_{1}\right),\left(\left(p_{1} \rightarrow p_{2}\right) \vee p_{1}\right),\left(p_{1} \rightarrow p_{2}\right), p_{1}, p_{2}\right\}
\end{aligned}
$$

Semantic Equivalence

- Definition Two propositional formulas F and G are semantically equivalent, in symbols $F \equiv G$, iff for all interpretations $/$ we have: $I \vDash F$ iff $I \vDash G$
- Theorem Some equivalence laws:

$$
\begin{array}{rlrl}
\neg \neg F & \equiv F & \text { double negation } \\
\neg(F \wedge G) & \equiv \neg F \vee \neg G & & \text { de Morgan } \\
\neg(F \vee G) & \equiv \neg F \wedge \neg G & & \\
F \wedge(G \vee H) & \equiv(F \wedge G) \vee(F \wedge H) & \text { distributivity } \\
F \vee(G \wedge H) & \equiv(F \vee G) \wedge(F \vee H) & & \text { equivalence } \\
F \leftrightarrow G & \equiv(F \wedge G) \vee(\neg G \wedge \neg F) & & \text { implication } \\
F \rightarrow G & \equiv \neg F \vee G & & \text { tautology } \\
F \vee G & \equiv F, \text { if } F \text { is valid } & \\
F \wedge G & \equiv G, \text { if } F \text { is valid } & \\
F \vee G & \equiv G, \text { if } F \text { is unsatisfiable } & & \text { unsatisfiability }
\end{array}
$$

Replacement

- $F\lceil G \mapsto H\rceil$ denotes the formula obtained from F by replacing an occurrence of $G \in \mathcal{S}(F)$ by H
\triangleright Usually, the context determines which occurrence is meant
\triangleright Sometimes the condition $G \in \mathcal{S}(F)$ is omitted In this case, if $G \notin \mathcal{S}(F)$, then $F\lceil G \mapsto H\rceil=F$
- Replacement Theorem If $\boldsymbol{G} \equiv \boldsymbol{H}$ then $\boldsymbol{F}\lceil\mathbf{G} \mapsto \boldsymbol{H}\rceil \equiv \boldsymbol{F}$

Generalized Disjunctions and Conjunctions

- Generalized disjunction $\left[F_{1}, \ldots, F_{n}\right]:=F_{1} \vee \ldots \vee F_{n}$
- Generalized conjunction $\left\langle F_{1}, \ldots, F_{n}\right\rangle:=F_{1} \wedge \ldots \wedge F_{n}$
- Empty generalized disjunction [] with [] ${ }^{\prime}=\perp$ for all I
- Empty generalized conjunction $\left\rangle\right.$ with $\left\rangle^{\prime}=\top\right.$ for all I
- Note $\boldsymbol{n} \wedge \overline{\boldsymbol{n}}$ is unsatisfiable, whereas $\boldsymbol{n} \vee \overline{\boldsymbol{n}}$ is valid, where $\boldsymbol{n} \in \mathbb{N}^{+}$
- Notation We consider \rangle and [] as abbreviations for $1 \vee \overline{1}$ and $1 \wedge \overline{1}$, resp.

Clauses and Conjunctive Normal Forms

- Definition
\triangleright A clause is a generalized disjunction $\left[L_{1}, \ldots, L_{n}\right], n \geq 0$, where every $L_{i}, 1 \leq i \leq n$, is a literal
\triangleright A clause is a Horn clause if at most one disjunct is an atom
\triangleright A clause is a unit clause if it contains precisely one literal
\triangleright A clause is a binary clause if it contains precisely two literals
- Definition
\triangleright A formula is in conjunctive normal form (clause form, CNF) iff it is of the form $\left\langle C_{1}, \ldots, C_{m}\right\rangle, m \geq 0$, and every $C_{j}, 1 \leq j \leq m$, is a clause
$\triangleright \mathbf{A}$ formula F in CNF is a Horn formula if it contains only Horn clauses
\triangleright A formula F in CNF is said to be in $n-C N F$ if each clause occurring in F has at most n literals

More Notations and Conventions

- C (possibly indexed) denotes a clause
- C, L and F, C denote $C \vee L$ and $F \wedge C$, respectively, where C is a clause and F a CNF-formula
- Clauses and CNF-formulas are sometimes considered as sets of literals and clauses, respectively, in which case
$\triangleright L_{i}, 1 \leq i \leq n$, are said to be elements of $\left[L_{1}, \ldots, L_{n}\right]$ and
$\triangleright C_{j}, 1 \leq j \leq m$, are said to be elements of $\left\langle C_{1}, \ldots, C_{m}\right\rangle$
Note that in sets duplicates are removed!
- It should be clear from the context whether clauses and CNF-formulas are considered as sets or generalized disjunctions and conjunctions, respectively
- When writing $C=C^{\prime}, L$ we do not suppose that L is the "last" literal occurring in C but some literal occurring in C and C^{\prime} is the disjunction or set of the "remaining" literals occurring in C
- A similar convention applies to $F=F^{\prime}, C$

The Function lits

- Let lits be the following function from the set of clauses to the set of literals

$$
\operatorname{lits}(C)= \begin{cases}\emptyset & \text { if } C=[] \\ \operatorname{lits}\left(C^{\prime}\right) \cup\{L\} & \text { if } C=C^{\prime}, L\end{cases}
$$

- It is extended to a function from the set of CNF-formulas to the set of literals

$$
\operatorname{lits}(F)= \begin{cases}\emptyset & \text { if } F=\langle \rangle \\ \operatorname{lits}\left(F^{\prime}\right) \cup \operatorname{lits}(C) . & \text { if } F=F^{\prime}, C\end{cases}
$$

The Function atoms

- Let atoms be the following function from the set of literals to the set of atoms

$$
\operatorname{atoms}(L)= \begin{cases}\{A\} & \text { if } L=A \\ \{A\} & \text { if } L=\neg A\end{cases}
$$

- It is extended to a function from the set of clauses to the set of atoms

$$
\operatorname{atoms}(C)= \begin{cases}\emptyset & \text { if } C=[] \\ \operatorname{atoms}\left(C^{\prime}\right) \cup \operatorname{atoms}(L) & \text { if } C=C^{\prime}, L\end{cases}
$$

- It is extended to a function from the set of CNF-formulas to the set of atoms

$$
\operatorname{atoms}(F)= \begin{cases}\emptyset & \text { if } F=\langle \rangle \\ \operatorname{atoms}\left(F^{\prime}\right) \cup \operatorname{atoms}(C) & \text { if } F=F^{\prime}, C\end{cases}
$$

Transformation into Clause Form

- Theorem There is an algorithm which transforms any propositional formula into a semantically equivalent formula in clause form
- Observation
\triangleright All equivalences can be eliminated using the law

$$
F \leftrightarrow G \equiv(F \wedge G) \vee(\neg F \wedge \neg G)
$$

- F and G are copied which may lead to a combinatorial explosion!
- Construct a sequence of examples demonstrating this explosion
\triangleright All implications can be eliminated using the law

$$
F \rightarrow G \equiv \neg F \vee G
$$

\triangleright Hence, we assume that only the connectives \neg, \wedge and \vee occur in formulas

An Algorithm for the Transformation into Clause Form

- Input A propositional formula F

Output A formula, which is in conjunctive normal form and is equivalent to F $G:=\langle[F]\rangle$ (G is a conjunction of disjunctions)
While G is not in conjunctive normal form do:
Select a non-clausal element H from G
Select a non-literal element K from H
Apply the rule among the following ones which is applicable

$$
\frac{\neg \neg D}{D} \quad \frac{\left(D_{1} \wedge D_{2}\right)}{D_{1} \mid D_{2}} \quad \frac{\neg\left(D_{1} \wedge D_{2}\right)}{\neg D_{1}, \neg D_{2}} \quad \frac{\left(D_{1} \vee D_{2}\right)}{D_{1}, D_{2}} \quad \frac{\neg\left(D_{1} \vee D_{2}\right)}{\neg D_{1} \mid \neg D_{2}}
$$

- A rule $\frac{D}{D^{\prime}}$ is applicable to K if K is of the form D If applied, then K is replaced by D^{\prime}
- A rule $\frac{D}{D_{1} \mid D_{2}}$ is applicable to K if K is of the form D If applied, H is replaced by two disjunctions
The first one is obtained from H by replacing the occurrence of D by D_{1} The second one is obtained from H by replacing the occurrence of D by D_{2}

An Example

- Let $F=p \wedge(p \rightarrow q) \rightarrow q$
- F is valid
- Eliminating implications yields

$$
\neg(p \wedge(\neg p \vee q)) \vee q
$$

- Applying the algorithm yields

$$
\begin{aligned}
& \langle[\neg(p \wedge(\neg p \vee q)) \vee q]\rangle \\
& \langle[\neg(p \wedge(\neg p \vee q), q]\rangle \\
& \langle[\neg p, \neg(\neg p \vee q), q]\rangle \\
& \langle[\neg p, \neg \neg p \wedge \neg q, q]\rangle \\
& \langle[\neg p, \neg \neg p, q],[\neg p, \neg q, q]\rangle \\
& \langle[\neg p, p, q],[\neg p, \neg q, q]\rangle
\end{aligned}
$$

- Both clauses in the final formula contain a complementary pair of literals

Remarks

- An application of a rule of the form $\frac{D}{D_{1} \mid D_{2}}$ may lead to copies of subformulas
\triangleright May this lead to a combinatorial explosion?
\triangleright If this is the case, then construct a sequence of examples showing the explosion
\triangleright If this is not the case, then prove it

Definitional Transformation

- The size of a formula may grow exponentially during normalization
- Can we do better?
\triangleright Unfortunately, the shortest CNF of some F is exponential in the size of F
\triangleright Luckily, we may use a weaker concept
- Definitional transformation Tseitin: On the complexity of derivation in propositional calculus. Leningrad Seminar on Mathematical Logic, 1970
\triangleright Let F be a formula, $G \in \mathcal{S}(F)$ and $p \notin \mathcal{S}(F)$ a propositional variable
\triangleright Replace F by $F\lceil G \mapsto p\rceil \wedge(p \leftrightarrow G)$
- Some observations
$\triangleright F \not \equiv F\lceil G \mapsto p\rceil \wedge(p \leftrightarrow G)$
$\triangleright F$ is satisfiable iff $F\lceil G \mapsto p\rceil \wedge(p \leftrightarrow G)$ is satisfiable (equi-satisfiable)
\triangleright The previously mentioned exponential growth can be avoided

Reduct of a CNF-Formula

- Definition Let F be a CNF-formula and J a partial interpretation. The reduct of F wrt $J\left(\left.F\right|_{J}\right)$ is obtained by applying the following transformations to F : For all $L \in J$ do
\triangleright Remove all clauses in F which contain L
\triangleright Remove all occurrences of \bar{L}
- Let F be the following formula:

$$
\langle[1],[1,2],[\overline{1}, 3],[\overline{1}, \overline{3}, 4],[5,6],[\overline{5}, 7],[\overline{5}, 8],[\overline{7}, \overline{8}]\rangle
$$

Then,

$$
\begin{array}{ll}
\left.F\right|_{(1)} & =\langle[3],[\overline{3}, 4],[5,6],[\overline{5}, 7],[\overline{5}, 8],[\overline{7}, \overline{8}]\rangle \\
\left.F\right|_{(1,3)} & =\langle[4],[5,6],[\overline{5}, 7],[\overline{5}, 8],[\overline{7}, \overline{8}]\rangle \\
\left.F\right|_{(1,3,4)} & =\langle[5,6],[\overline{5}, 7],[\overline{5}, 8],[\overline{7}, \overline{8}]\rangle \\
\left.F\right|_{(1,3,4, \overline{5})} & =\langle[6],[\overline{7}, \overline{8}]\rangle \\
\left.F\right|_{(1,3,4, \overline{5}, 6)} & =\langle[\overline{7}, \overline{8}]\rangle \\
\left.F\right|_{(1,3,4, \overline{5}, 6, \overline{7})} & =\langle \rangle
\end{array}
$$

Reduct of a Clause

- Definition Let C be a clause and J be a (partial or total) interpretation. The reduct of C wrt J, in symbols $\left.C\right|_{J}$, is
$\triangleright\rangle$ if $\boldsymbol{C} \cap \boldsymbol{J} \neq \emptyset$
\triangleright the clause obtained from C by removing all occurrences of \bar{L} for all $L \in J$

Conflicts

- Definition Let F be a CNF-formula and J a (partial or total) interpretation for F $\triangleright J$ satisfies F (in symbols, $J \models F$) iff $\left.F\right|_{J}$ is empty
$\triangleright J$ falsifies F (in symbols, $J \not \vDash F$) iff $\left.\quad F\right|_{J}$ contains the empty clause; In this case, J is sometimes called conflict for F

Propositional Resolution

- In the following clauses are considered to be sets
- Definition Let C_{1} be a clause containing L and C_{2} be a clause containing \bar{L}; The (propositional) resolvent of C_{1} and C_{2} with respect to L is the clause

$$
\left(C_{1} \backslash\{L\}\right) \cup\left(C_{2} \backslash\{\bar{L}\}\right)
$$

C is said to be a resolvent of C_{1} and C_{2} iff there exists a literal L such that C is the resolvent of C_{1} and C_{2} wrt L

Linear Resolution Derivations

- Definition Let $\boldsymbol{C}, \boldsymbol{D}$ be clauses and \mathcal{F} a set of formulas
\triangleright A linear resolution derivation from C wrt \mathcal{F} is a sequence ($D_{i} \mid i \geq 0$) of clauses such that
$\Rightarrow D_{0}=C$ and
$\rightarrow D_{i}$ is a resolvent of D_{i-1} and some $E \in \mathcal{F}$ for all $i>0$
\triangleright A linear resolution derivation from C to D wrt \mathcal{F} is
\rightarrow a finite linear resolution derivation ($\left.D_{i} \mid 0 \leq i \leq n\right)$ from C wrt \mathcal{F}
\rightarrow such that $D_{n}=D$

Example: Sudoku Puzzles

- Let $\boldsymbol{n} \in \mathbb{N}$; A Sudoku puzzle
\triangleright consists of an $n^{2} \times n^{2}$ grid
\triangleright made up of $n \times n$ subgrids called blocks
\triangleright with some integers from [$1, n^{2}$] placed in some cells
\triangleright where some of these placements are predefined
- The problem is
\triangleright to assign $i \in\left[1, n^{2}\right]$ to each cell of the grid such that
\triangleright each row, column and block contains exactly one occurrence of each integer in [$1, n^{2}$]
- There are more than 6×10^{12} 3-Sudoku puzzles
- Sudoku puzzles with $n>3$ appear to be difficult to solve for humans

A Simple 3-Sudoku

A SAT Encoding of n-Sudokus (1)

- (x, y, v) represents the fact that value v is in the cell x, y
- Definedness Each cell contains one element of [1, n^{2}]

$$
\bigwedge_{x=1}^{n^{2}} \bigwedge_{y=1}^{n^{2}} \bigvee_{v=1}^{n^{2}}(x, y, v)
$$

- Uniqueness for Cells Each cell has at most one value

$$
\bigwedge_{x=1}^{n^{2}} \bigwedge_{y=1}^{n^{2}} \bigwedge_{v=1}^{n^{2}-1} \bigwedge_{w=v+1}^{n^{2}}((x, y, v) \rightarrow \neg(x, y, w))
$$

- Uniqueness for Rows All numbers in [1, $\left.\boldsymbol{n}^{\mathbf{2}}\right]$ must occur in every row

$$
\bigwedge_{x=1}^{n^{2}} \bigwedge_{v=1}^{n^{2}} \bigwedge_{y=1}^{n^{2}-1} \bigwedge_{w=y+1}^{n^{2}}((x, y, v) \rightarrow \neg(x, w, v))
$$

A SAT Encoding of n-Sudokus (2)

- Uniqueness for Columns All numbers in [1, \boldsymbol{n}^{2}] must occur in every column

$$
\bigwedge_{y=1}^{n^{2}} \bigwedge_{v=1}^{n^{2}} \bigwedge_{x=1}^{n^{2}-1} \bigwedge_{w=x+1}^{n^{2}}((x, y, v) \rightarrow \neg(w, y, v))
$$

- Uniqueness for Blocks All numbers in [1, $\left.\boldsymbol{n}^{2}\right]$ must occur in every block

$$
\bigwedge_{i=0}^{n-1} \bigwedge_{j=0}^{n-1} \bigwedge_{x=n \cdot i+1}^{n \cdot i+n} \bigwedge_{y=n \cdot j+1}^{n \cdot j+n} \bigwedge_{v=1}^{n^{2}-1} \bigwedge_{w=v+1}^{n^{2}}((x, y, v) \rightarrow \neg(x, y, w))
$$

- Claim Let \mathcal{F} be the set of formulas encoding a Sudoku puzzle Each model for \mathcal{F} specifies a solution for the puzzle

Example: Planning

- Situation Calculus
- A Simple Planning Language
- Planning as Satisfiability Testing
- Solving Planning Problems

Situation Calculus

- Situation calculus based planning as deduction McCarthy, Hayes: Some Philosophical Problems from the Standpoint of Artificial Intelligence. In: Machine Intelligence 4, Meltzer and Michie eds., Edinburgh University Press, 463-502: 1969
\triangleright General properties of causality, and certain obvious but until now unformalized facts about the possibility and results of actions, are given as axioms
\triangleright It is a logical consequence of the facts of a situation and the general axioms that certain persons can achieve certain goals by taking certain actions
\triangleright Block a is on block b after performing action move (a, b) in state s_{1}

$$
\text { on }\left(a, b, \text { result }\left(\operatorname{move}(a, b), s_{1}\right)\right)
$$

\triangleright Inherently first-order

Planning as Satisfiability Testing

- We are interested only in finite plans containing no more than a given number of actions
\triangleright A restricted approach which is equivalent to a finite propositional system
\triangleright Planning as satisfiability testing instead of planning as deduction Kautz, Selman: Planning as Satisfiability.
In: Proceedings 10th European Conference on Artificial Intelligence, 359-363: 1992

A Simple Planning Language

- We will use schemas to denote finite sets of propositional formulas
- A schema is a function-free typed predicate logic formula with equality
\triangleright Two types: block and time
\triangleright Each type contains a finite set of individuals denoted by unique constants
\rightarrow table, a, b, \ldots are constants of type block
\rightarrow The set constants of type time is a finite set of integers [1, n]
\triangleright The precedence order is extended to

$$
\neg \succ\{\vee, \wedge\} \succ \rightarrow \succ \leftrightarrow \succ\{\forall, \exists\}
$$

$\triangleright X, Y, \ldots$ denote variables of type block
$\triangleright T$ denotes a variable of type time ranging over [1, $n-1$]
T^{\prime} denotes a variable of type time ranging over [1, n]
\triangleright Arithmetic expressions like $T+1$ are interpreted when schemas are written in full

Predicates

- on (X, Y, T) denotes that block X is on top of block Y at time T
- clear (X, T) denotes that block X is clear at time T
$\downarrow \operatorname{move}(X, Y, Z, T)$ denotes that X is moved from the top of Y to the top of Z between T and $T+1$
- $X=Y$ denotes that X and Y are the same block

Equality Constraints

- Equalities

$$
\{a=a \mid a \text { is a constant of type block }\}
$$

- Inequalities

$$
\{a \neq b \mid a \text { and } b \text { are two different constants of type block }\}
$$

Initial and Goal Conditions

- Let $[1, n]$ be the range of integers
$\triangleright n$ states s_{1}, \ldots, s_{n}
$\triangleright n-1$ actions a_{1}, \ldots, a_{n-1} with a_{i} leading from s_{i} to $s_{i+1}, 1 \leq i \leq n-1$
- Initial conditions are formulas in which only 1 appears as term of type time
\triangleright on $(a, b, 1) \wedge$ on $(b$, table, 1$) \wedge$ clear $(a, 1)$
- Goal conditions are formulas in which only \boldsymbol{n} appears as term of type time
\triangleright With $n=3$ we may consider on $(b, a, 3)$

Domain Constraints

- The table is always clear ($\forall T^{\prime}$) clear(table, T^{\prime})
- A block except the table cannot be clear and support a block at the same time

$$
\left(\forall X, Y, T^{\prime}\right)\left(Y \neq \text { table } \rightarrow \neg\left(\operatorname{clear}\left(Y, T^{\prime}\right) \wedge \text { on }\left(X, Y, T^{\prime}\right)\right)\right)
$$

- A block cannot be on itself $\left(\forall X, T^{\prime}\right) \neg$ on $\left(X, X, T^{\prime}\right)$
- The table cannot be on another block $\left(\forall Y, T^{\prime}\right) \neg$ on (table, $\left.Y, T^{\prime}\right)$
- A block can only be on one block

$$
\left(\forall X, Y_{1}, Y_{2}, T^{\prime}\right)\left(\mathrm{on}\left(X, Y_{1}, T^{\prime}\right) \wedge \operatorname{on}\left(X, Y_{2}, T^{\prime}\right) \rightarrow Y_{1}=Y_{2}\right)
$$

- A block except the table can support only one block

$$
\left(\forall X_{1}, X_{2}, Y, T^{\prime}\right)\left(Y \neq \text { table } \wedge \text { on }\left(X_{1}, Y, T^{\prime}\right) \wedge \text { on }\left(X_{2}, Y, T^{\prime}\right) \rightarrow X_{1}=X_{2}\right)
$$

Action Axioms

- Move X from Y to Z

$$
\begin{aligned}
(\forall X, Y, Z, T) & (\text { on }(X, Y, T) \wedge \operatorname{clear}(X, T) \wedge \operatorname{clear}(Z, T) \\
& \wedge X \neq Y \wedge X \neq Z \wedge Y \neq Z \wedge X \neq \text { table } \\
& \wedge \operatorname{move}(X, Y, Z, T) \\
& \rightarrow \operatorname{on}(X, Z, T+1) \wedge \operatorname{clear}(Y, T+1))
\end{aligned}
$$

- Actions are only executed if their preconditions hold

$$
\begin{aligned}
&(\forall X, Y, Z, T)(\operatorname{move}(X, Y, Z, T) \\
& \rightarrow \operatorname{clear}(X, T) \wedge \operatorname{clear}(Z, T) \wedge \text { on }(X, Y, T) \\
&\wedge X \neq Y \wedge X \neq Z \wedge Y \neq Z \wedge X \neq \text { table })
\end{aligned}
$$

More Action Axioms

- Only one actions occurs at a time

$$
\begin{gathered}
\left(\forall X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}, T\right)\left(\operatorname{move}\left(X_{1}, Y_{1}, Z_{1}, T\right) \wedge \operatorname{move}\left(X_{2}, Y_{2}, Z_{2}, T\right)\right. \\
\left.\rightarrow X_{1}=X_{2} \wedge Y_{1}=Y_{2} \wedge Z_{1}=Z_{2}\right)
\end{gathered}
$$

- Some action occurs at every time

$$
(\forall T)(\exists X, Y, Z) \operatorname{move}(X, Y, Z, T)
$$

Frame Axioms

- A clear block which is not covered as a result of a move action stays clear

$$
\begin{aligned}
\left(\forall X_{1}, X_{2}, Y, Z, T\right) & \left(\operatorname{clear}\left(X_{2}, T\right) \wedge \operatorname{move}\left(X_{1}, Y, Z, T\right)\right. \\
& \wedge X_{2} \neq Y \wedge X_{2} \neq Z \\
& \left.\rightarrow \operatorname{clear}\left(X_{2}, T+1\right)\right)
\end{aligned}
$$

- A block stays on top of another one if it is not moved

$$
\begin{gathered}
\left(\forall X_{1}, X_{2}, Y_{1}, Y_{2}, Z, T\right)\left(\operatorname{on}\left(X_{2}, Y_{2}, T\right) \wedge \operatorname{move}\left(X_{1}, Y_{1}, Z, T\right) \wedge X_{1} \neq X_{2}\right. \\
\left.\rightarrow \operatorname{on}\left(X_{2}, Y_{2}, T+1\right)\right)
\end{gathered}
$$

Planning as Satisfiability Testing

- Let \mathcal{A} be a set of action axioms, \mathcal{F} be a set of frame axioms, \mathcal{D} be a set of domain axioms,
\mathcal{E} be a set of equality axioms,
S be an initial condition, G be a goal condition,
then a planning problem is the question of whether

$$
\mathcal{A} \cup \mathcal{F} \cup \mathcal{D} \cup \mathcal{E} \cup\{\mathbf{S}, \boldsymbol{G}\}
$$

has a model

Example

- Let a, b, table be all constants of type block
- Let [1,3] be all constants of type time
- Consider the planning problem
$\mathcal{A} \cup \mathcal{F} \cup \mathcal{D} \cup \mathcal{E} \cup\{$ on $(a, b, 1) \wedge$ on $(b$, table, 1$) \wedge \operatorname{clear}(a, 1)$, on $(b, a, 3)\}$
- It has only one model (written as set instead of sequence)

```
{ on(a, b, 1), on(b, table, 1), clear(a, 1), move(a, b, table, 1),
        on(a, table, 2), on(b, table, 2), clear(a, 2), clear(b, 2), move(b, table, a, 2),
        on(a, table, 3), on(b, a, 3), clear(b,3)}
    \cupclear(table,i)| 1\leqi\leq3}\cup\mathcal{E}
```

- We can extract the plan

$$
\operatorname{move}(a, b, \text { table }, 1) \wedge \operatorname{move}(b, \text { table, } a, 2)
$$

Remarks

Let \mathcal{G} be the specification of a planning problem

- Is \mathcal{G} correct?
- What is the meaning of "correct" in this context?
- If we consider (McCarthy, Hayes 1969), then at least one needs to
\triangleright formally define the notion of a generated plan given a model of \mathcal{G} and
\triangleright show that each generated plan is also a plan wrt the planning as deduction approach
- Is \mathcal{G} minimal?
- What are logical consequences of \mathcal{G} ?
- Reasoning is often easier in predicate logic
\triangleright Reasoning with schemas as first-order formulas
\triangleright But then we need to show that first-order satisfiability corresponds to propositional satisfiability

Solving Planning Problems

- Let \mathcal{G} be the specification of a planning problem
$-\mathcal{G}$ can be solved using the following steps
\triangleright Write \mathcal{G} in full
\triangleright Transform \mathcal{G} into CNF
\triangleright Bijectively replace ground atoms by propositional variables
\triangleright Transform formulas into syntatic form required by a solver
\triangleright Apply the solver
\triangleright Read out the plan
- This will be demonstrated by means of our running example

Writing Specifications in Full

- A block except the table cannot be clear and support a block at the same time

$$
\left(\forall X, Y, T^{\prime}\right)\left(Y \neq \text { table } \rightarrow \neg\left(\operatorname{clear}\left(Y, T^{\prime}\right) \wedge \text { on }\left(X, Y, T^{\prime}\right)\right)\right)
$$

- is written in full as:

$$
\left\{\begin{array}{l}
\quad(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 1) \wedge \text { on }(a, a, 1))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 2) \wedge \text { on }(a, a, 2))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 3) \wedge \text { on }(a, a, 3))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 1) \wedge \text { on }(b, a, 1))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 2) \wedge \text { on }(b, a, 2))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 3) \wedge \text { on }(b, a, 3))), \\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 1) \wedge \text { on }(\text { table }, a, 1))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 2) \wedge \text { on }(\text { table }, a, 2))), \\
\\
(a \neq \text { table } \rightarrow \neg(\operatorname{clear}(a, 3) \wedge \text { on(table }, a, 3))), \\
\\
(b \neq \text { table } \rightarrow \ldots
\end{array}\right.
$$

Transformation in Conjunctive Normal Form

- A block except the table cannot be clear and support a block at the same time

$$
\left(\forall X, Y, T^{\prime}\right)\left(Y \neq \text { table } \rightarrow \neg\left(\operatorname{clear}\left(Y, T^{\prime}\right) \wedge \text { on }\left(X, Y, T^{\prime}\right)\right)\right)
$$

- As CNF we obtain

$$
\begin{aligned}
& \text { 〈 } \quad[a=\text { table, } \neg \operatorname{clear}(a, 1), \neg \mathrm{on}(a, a, 1)], \\
& \text { [a = table, } \neg \text { clear (} a, 2 \text {), ᄀon(} a, a, 2) \text {], } \\
& \text { [a = table, } \neg \text { clear }(a, 3) \text {, ᄀon (} a, a, 3) \text {], } \\
& {[a=\text { table, } \neg \operatorname{clear}(a, 1), \neg \text { on }(b, a, 1) \text {], }} \\
& \text { [} a=\text { table, } \neg \text { clear }(a, 2), \neg \text { on }(b, a, 2) \text {], } \\
& \text { [a = table, } \neg \operatorname{clear}(a, 3), \neg \text { on }(b, a, 3) \text {], } \\
& \text { [} a=\text { table, } \neg \text { clear }(a, 1) \text {, } \neg \text { on(table, } a, 1) \text {], } \\
& \text { [a = table, } \neg \text { clear (a, 2), ᄀon(table, a, 2)], } \\
& \text { [a = table, } \neg \text { clear (} a, 3 \text {), } \neg \text { on(table, } a, 3) \text {], }
\end{aligned}
$$

Introduction of Propositional Variables

- A block except the table cannot be clear and support a block at the same time

$$
\left(\forall X, Y, T^{\prime}\right)\left(Y \neq \text { table } \rightarrow \neg\left(\operatorname{clear}\left(Y, T^{\prime}\right) \wedge \text { on }\left(X, Y, T^{\prime}\right)\right)\right)
$$

- Replacing ground atoms by natural numbers we obtain

$$
\begin{aligned}
& {[3, \neg 10, \neg 19],} \\
& {[3, \neg 13, \neg 28],} \\
& {[3, \neg 16, \neg 37],} \\
& {[3, \neg 10, \neg 22],} \\
& {[3, \neg 13, \neg 31],} \\
& {[3, \neg 16, \neg 40],} \\
& {[3, \neg 10, \neg 25],} \\
& {[3, \neg 13, \neg 34],} \\
& {[3, \neg 16, \neg 43],}
\end{aligned}
$$

CNF-Form Required by the Solver

- A block except the table cannot be clear and support a block at the same time

$$
\left(\forall X, Y, T^{\prime}\right)\left(Y \neq \text { table } \rightarrow \neg\left(\operatorname{clear}\left(Y, T^{\prime}\right) \wedge \text { on }\left(X, Y, T^{\prime}\right)\right)\right)
$$

- The solver requires formulas to be in so-called .cnf-form

$$
\begin{aligned}
& \text { p cnf nv nc } \\
& 3-10-19 \\
& 3-13 \\
& 3 \\
& 3
\end{aligned}-28 \text {-16 }-3700
$$

where nv and nc are the number of variables and clauses, respectively

Application of a Solver

- Here we are applying the solver sat4j
\triangleright Check out the internet for sat4j
\triangleright In our example, nv $=99$ and $\mathrm{nc}=4299$
\triangleright It uses a different mapping from ground atoms to natural numbers
\triangleright It uses a different representation of interpretations atoms are listed iff they are mapped to \top
\triangleright It yields

$$
(1,5,9,10,11,14,15,16,17,18,22,26,27,30,34,35,56,77)
$$

\triangleright This translates into the model
($a=a, b=b$, table $=$ table, clear($a, 1$), clear($a, 2$), clear($b, 2)$, clear(b, 3), clear(table, 1), clear(table, 2), clear(table, 3), on ($a, b, 1$), on (a, table, 2), on (a, table, 3), on($b, a, 3)$, on (b, table, 1), on(b, table, 2), move(a, b, table, 1), move(b, table, $a, 2$))

Reading out the Plan

- State at $t=1$

$$
\langle\text { on }(a, b, 1), \text { on }(b, \text { table, } 1), \text { clear }(a, 1), \text { clear(table, } 1)\rangle
$$

- Action at $t=1$

$$
\text { move }(a, b, \text { table, } 1)
$$

- State at $t=2$
\langle clear(a, 2), clear(b, 2), clear(table, 2), on(a, table, 2), on(b, table, 2) \rangle
- Action at $t=2$

$$
\text { move(b, table, } a, 2)
$$

- State at $t=3$

$$
\langle\text { clear(b, 3), clear(table, 3), on(a, table, 3), on(b, a, 3) }\rangle
$$

Example: Periodic Event Scheduling Problems

- Periodic events occur in traffic control systems, train scheduling systems and many other applications
- The problem is to schedule periodic events with respect to some criteria
- The problem is $\mathcal{N} \mathcal{P}$-complete
- Real world problems are often very large
\triangleright Scheduling of trains in the railway network of Germany
\triangleright Only subnetworks can be dealt with currently
- The previously best solvers were based on constraint programming techniques
- We looked into a SAT-based approach
\triangleright Großmann, H., Manthey, Nachtigall, Opitz, Steinke: Solving Periodic Event Scheduling Problems with SAT. In: Advanced Research in Applied Artificial Intelligence, LNCS 7345, 166-175: 2012

Overview

- Periodic Event Networks
- Periodic Event Scheduling Problems
- Direct Encoding
- Order Encoding
- Experimental Evaluation

Intervals

- Let $I, u \in \mathbb{Z}$
$\triangleright[I, \boldsymbol{u}]=\{\boldsymbol{x} \in \mathbb{Z} \mid I \leq \boldsymbol{x} \leq \boldsymbol{u}\}$ is the interval from $/$ to u
$\triangleright I$ is called lower bound and u is called upper bound of the interval $[I, u]$
- Let $[I, u]$ be an interval and $t \in \mathbb{N}$
$\triangleright[I, \boldsymbol{u}]_{t}=\bigcup_{\boldsymbol{x} \in \mathbb{Z}}[I+\boldsymbol{x} \cdot \boldsymbol{t}, \boldsymbol{u}+\boldsymbol{x} \cdot \boldsymbol{t}]$ is called interval from $/$ to u modulo t
$\triangleright[I, u]_{t} \subseteq \mathbb{Z}$
$\triangleright[2,4]_{10}=[2,4] \cup[12,14] \cup[-8,-6] \cup[22,24] \cup[-18,-6] \cup \ldots$
$\triangleright[I, u]_{0}=[I, u]$

Periodic Event Networks and Schedules

Let $(\mathcal{V}, \mathcal{E})$ be a graph, $t \in \mathbb{N}$, and $a: \mathcal{E} \rightarrow 2^{2^{\mathbb{Z}}}$ a mapping which assigns to each edge a finite set of intervals modulo t
$\triangleright \mathcal{N}=(\mathcal{V}, \mathcal{E}, \boldsymbol{a}, \boldsymbol{t})$ is called periodic event network (PEN)
$\triangleright t$ is called period
\triangleright The elements of \mathcal{V} are called (periodic) events
$\triangleright \boldsymbol{a}(e)$ is called set of constraints for the edge $\boldsymbol{e} \in \mathcal{E}$

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN and $\Pi: \mathcal{V} \rightarrow \mathbb{Z}$
$\triangleright \Pi$ is called schedule for \mathcal{N}

Constraints

- In PENs two types of constraints are usually distinguished: time consuming constraints and symmetry constraints
- Here, only time consuming constraints are considered

Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN, $(i, j) \in \mathcal{E},[I, u]_{t} \in a(i, j)$, and Π a schedule for \mathcal{N}
$\triangleright[I, u]_{t}$ holds for (i, j) under Π iff $\Pi(j)-\Pi(i) \in[I, u]_{t}$

- A schedule Π for a $\operatorname{PEN} \mathcal{N}$ is said to be valid iff all constraints of \mathcal{N} hold under Π

Example

- Consider the following PEN \boldsymbol{N}

- Valid schedules for \mathcal{N} are

$$
\begin{aligned}
& \Pi_{1}=\{p \mapsto 24, q \mapsto 27, r \mapsto 28, s \mapsto 30\} \\
& \Pi_{2}=\{p \mapsto 144, q \mapsto 147, r \mapsto 148, s \mapsto 150\}
\end{aligned}
$$

Feasible Regions

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN and $(i, j) \in \mathcal{E}$
\triangleright Each $[I, u]_{t} \in a(i, j)$ constrains the possible values for i and j in a schedule
\triangleright Suppose $[3,5]_{10} \in a(i, j)$, then the blue regions are feasible, whereas the other regions are infeasible wrt the constraint $[3,5]_{10}$

Equivalent Schedules

- Let Π_{1} and Π_{2} be schedules for the PEN $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$
$\triangleright \Pi_{1}$ and Π_{2} are equivalent, in symbols $\Pi_{1} \equiv \Pi_{2}$, iff \quad for all $i \in \mathcal{V}$ we find $\Pi_{1}(i) \bmod t=\Pi_{2}(i) \bmod t$
\triangleright Proposition \equiv is an equivalence relation
\triangleright Proposition If $\Pi_{1} \equiv \Pi_{2}$ and Π_{1} is valid, then Π_{2} is also valid
\triangleright Corollary If there exists a valid schedule Π_{1} for \mathcal{N}, then there exists a valid schedule $\Pi_{2} \equiv \Pi_{1}$ such that for all $i \in \mathcal{V}$ we find $\Pi_{2}(i) \in[0, t-1]$
\triangleright It suffices to search for schedules Π with $\Pi(i) \in[0, t-1]$ for all $i \in \mathcal{V}$

Periodic Event Scheduling Problems

- A periodic event scheduling problem (PESP) consists of a PEN $\boldsymbol{\mathcal { N }}$ and is the question whether there exists a valid schedule for \mathcal{N}
\triangleright PESP is decidable
\triangleright PESP is $\mathcal{N} \mathcal{P}$-complete
\triangleright If there exists a valid schedule, then the schedule shall be computed
\triangleright Until 2011 the best PESP-solvers were based on constraint propagation techniques (Opitz: Automatische Erzeugung und Optimierung von Taktfahrplänen in Schienenverkehrsnetzen. PhD thesis, TU Dresden: 2009)

Direct Encoding of Variables with Finite Domain

- Let \boldsymbol{x} be a variable with finite domain D
\triangleright Variables are encoded with the help of propositional variables $p_{x, k}$ such that $p_{x, k}$ is mapped to T iff the value of x is k
\triangleright The direct encoding of \boldsymbol{x} is

$$
\left(\bigvee_{k \in D} p_{x, k}\right) \wedge\left(\bigwedge_{k \in D} \bigwedge_{I \in D \backslash\{k\}} \neg\left(p_{x, k} \wedge p_{x, l}\right)\right)
$$

\triangleright The direct encoding of $x \in[2,3]$ is

$$
\begin{aligned}
& \left(p_{x, 2} \vee p_{x, 3}\right) \wedge \neg\left(p_{x, 2} \wedge p_{x, 3}\right) \wedge \neg\left(p_{x, 3} \wedge p_{x, 2}\right) \\
& \equiv\left(p_{x, 2} \vee p_{x, 3}\right) \wedge\left(\neg p_{x, 2} \vee \neg p_{x, 3}\right)
\end{aligned}
$$

Direct Encoding of Values for Events

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN
\triangleright Each schedule Π will assign a value from $[0, t-1]$ to each $i \in \mathcal{V}$
\triangleright Hence, we obtain the following direct encoding for $\Pi(i)$

$$
F_{i}=\left(\bigvee_{k \in[0, t-1]} p_{\Pi(i), k}\right) \wedge\left(\bigwedge_{k \in[0, t-1]} \bigwedge_{t \in[0, t-1] \backslash\{k\}} \neg\left(p_{\Pi(i), k} \wedge p_{\Pi(i), I}\right)\right)
$$

\triangleright Let

$$
\mathcal{F}_{E}=\bigwedge_{i \in \mathcal{V}} F_{i}
$$

Direct Encoding of Time Consuming Constraints

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN
\triangleright Each constraint of \mathcal{N} defines an infeasible region
\triangleright Each infeasible region can be encoded as the negation of the disjunction of all points in the region
\triangleright Let \mathcal{F}_{T} be the conjunction of these encodings for all constraints in \mathcal{N}
- The direct encoding of a PEN $\boldsymbol{\mathcal { N }}$ is

$$
\mathcal{F}_{\mathcal{N}}=\mathcal{F}_{E} \wedge \mathcal{F}_{\boldsymbol{T}}
$$

$\triangleright \mathcal{F}_{\mathcal{N}}$ will be simplified and normalized before being submitted to a SAT-solver

Encoding Variables with Finite Ordered Domain

- We consider variables, whose domain is finite and ordered
\triangleright Here, we consider as domain intervals (modulo some $t \in \mathbb{N}$)
$\triangleright x$ with domain $[1,3]$
- Variables are encoded with the help of propositional variables $\boldsymbol{q}_{x, j}$ such that $\boldsymbol{q}_{\boldsymbol{x}, \boldsymbol{j}}$ is mapped to \top iff $\boldsymbol{x} \leq \boldsymbol{j}$
- Let x be a variable with domain $[I, u]$
\triangleright The order encoding of x is

$$
\neg q_{x, l-1} \wedge q_{x, u} \wedge \bigwedge_{j \in[I, u]}\left(\neg q_{x, j-1} \vee q_{x, j}\right)
$$

\triangleright The order encoding of x with domain $[1,3]$ is

$$
\left\langle\left[\neg q_{x, 0}\right],\left[q_{x, 3}\right],\left[\neg q_{x, 0}, q_{x, 1}\right],\left[\neg q_{x, 1}, q_{x, 2}\right],\left[\neg q_{x, 2}, q_{x, 3}\right]\right\rangle
$$

Simplifying the Order Encoding

- Recall

$$
\left\langle\left[\neg q_{x, 0}\right],\left[q_{x, 3}\right],\left[\neg q_{x, 0}, q_{x, 1}\right],\left[\neg q_{x, 1}, q_{x, 2}\right],\left[\neg q_{x, 2}, q_{x, 3}\right]\right\rangle=F
$$

and observe that $\left[\neg q_{x, 0}\right.$] and $\left[q_{x, 3}\right.$] are unit clauses

- Hence, any model for F must contain $\neg q_{x, 0}$ and $q_{x, 3}$, and

$$
\left.F\right|_{\left(q_{x, 3}, \neg q_{x, 0}\right)}=\left\langle\left[\neg q_{x, 1}, q_{x, 2}\right]\right\rangle
$$

- Let \boldsymbol{x} be a variable with domain $[I, u]$ and F_{X} its order encoding, then

$$
\left.F_{x}\right|_{\left(q_{u}, \neg q_{x}, l-1\right)}=\bigwedge_{j \in[l+1, u-1]}\left(\neg q_{x, j-1} \vee q_{x, j}\right) .
$$

The latter is called simplified order encoding of \boldsymbol{x}

- The simplified order encoding of x with domain $[2,3]$ or $[5,5]$ is \rangle

Order Encoding of Values for Events

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN
\triangleright Each schedule Π will assign a value from $[0, t-1]$ to each $i \in \mathcal{V}$
\triangleright Hence, we obtain the following order encoding for $\Pi(i)$

$$
G_{i}=\neg q_{\Pi(i),-1} \wedge q_{\Pi(i), t-1} \wedge \bigwedge_{j \in[1, t-1]}\left(\neg q_{\Pi(i), j-1} \vee q_{\Pi(i), j}\right) .
$$

\triangleright Let

$$
\mathcal{G}_{E}=\bigwedge_{i \in \mathcal{V}} G_{i}
$$

Order Encoding of Time Consuming Constraints - Idea

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN, $(i, j) \in \mathcal{E}$, and $[3,5]_{10} \in a(i, j)$
\triangleright In the following figure, the red square is infeasible, i.e.,

$$
\{(\Pi(i), \Pi(j)) \mid \Pi(i) \in[4,7], \Pi(j) \in[3,6]\}
$$

- Idea Encode sufficiently many squares to cover the infeasible regions

Order Encoding an Infeasible Square

- Reconsider $\{(\Pi(i), \Pi(j)) \mid \Pi(i) \in[4,7], \Pi(j) \in[3,6]\}$
\triangleright We obtain

$$
\begin{aligned}
& \neg(\Pi(i) \geq 4 \wedge \Pi(i) \leq 7 \wedge \Pi(j) \geq 3 \wedge \Pi(j) \leq 6) \\
& \equiv \quad \neg(\neg \Pi(i)<4 \wedge \Pi(i) \leq 7 \wedge \neg \Pi(j)<3 \wedge \Pi(j) \leq 6) \\
& \equiv \Rightarrow(\neg \Pi(i) \leq 3 \wedge \Pi(i) \leq 7 \wedge \neg \Pi(j) \leq 2 \wedge \Pi(j) \leq 6) \\
& \equiv \quad(\Pi(i) \leq 3 \vee \neg \Pi(i) \leq 7 \vee \Pi(j) \leq 2 \vee \neg \Pi(j) \leq 6) \\
& =\quad\left[q_{\Pi(i), 3}, \neg q_{\Pi(i), 7}, q_{\Pi(j), 2}, \neg q_{n(j), 6}\right]
\end{aligned}
$$

The final formula is the encoding of the given infeasible square

- Suppose $[i, j]_{t}$ was the k th constraint of $a(i, j)$ wrt some PEN \mathcal{N} (assuming some ordering)
\triangleright Let $G_{i j k}$ denote the conjunction of encodings of infeasible squares necessary to cover the infeasible regions wrt $[i, j]_{t}$

Order Encoding of Time Consuming Constraints

- Let $\mathcal{N}=(\mathcal{V}, \mathcal{E}, a, t)$ be a PEN

$$
\mathcal{G}_{T}=\bigwedge_{i \in \mathcal{V}} \bigwedge_{j \in \mathcal{V}} \bigwedge_{k \in a(i, j)} G_{i j k}
$$

is the encoding of the time consuming constaints of \mathcal{N}

- The order encoding of a $\operatorname{PEN} \boldsymbol{\mathcal { N }}$ is

$$
\mathcal{G}_{\mathcal{N}}=\mathcal{G}_{E} \wedge \mathcal{G}_{T}
$$

$\triangleright \mathcal{G}_{\mathcal{N}}$ will be simplified and normalized before being submitted to a SAT-solver

Experimental Evaluation

- Cooperation with the Traffic Flow Science Group at the Faculty of Transportation and Traffic Science of TU Dresden
- Based on data from the Deutsche Bahn AG
- We compared
\triangleright PESPSOLVE, a state-of-the-art constaint-based PESP-solver
\triangleright DIRECT+RISS, the state-of-the-art SAT-solver RISS using direct encoding
\triangleright ORDERED+RISS, RISS using ordered encoding
- All solvers were given a timeout of $\mathbf{2 4 h}=86400$ s
- The experiments were run on a Intel Core i7 with 8 GB RAM

Number of Variables and Clauses

	$\mathcal{N}=(\mathcal{V}, \mathcal{E}, \boldsymbol{a}, \boldsymbol{t})$		direct encoding $\mathcal{F}_{\mathcal{N}}$		order encoding $\mathcal{G}_{\mathcal{N}}$	
instance	$\|\mathcal{V}\|$	\#a	$\left\|\operatorname{var}\left(\mathcal{F}_{\mathcal{N}}\right)\right\|$	$\left\|\mathcal{F}_{\mathcal{N}}\right\|$	$\left\|\operatorname{var}\left(\mathcal{G}_{\mathcal{N}}\right)\right\|$	$\mathcal{G}_{\mathcal{N}} \mid$
swg_{2}	60	1,145	7,200	2,037,732	7,140	83,740
fernsym	128	3,117	15,360	6,657,955	15,232	353,276
swg_{4}	170	7,107	20,400	6,193,570	20,230	399,191
swg_{3}	180	2,998	21,600	4,874,144	21,420	214,011
$\mathbf{s w g}_{1}$	221	7,443	26,520	7,601,906	26,299	462,217
seg_{2}	611	9,863	73,320	25,101,341	72,709	1,115,210
seg_{1}	1,483	10,351	177,960	34,323,942	176,477	1,348,045

- Notation
\triangleright \#a denotes the number of constraints given by a
$\triangleright \operatorname{var}(X)$ denotes the number of variables occurring in \boldsymbol{X}
$\triangleright|X|$ denotes the cardinality of the set X

Results

instance	PESPSOLVE/S	DIRECT+RISS/s	ORDERED+RISS/s	speedup
$\mathbf{s w g}_{3}$	66	50	2	33
swg_{2}	512	37	2	256
SWg_{4}	912	752	8	114
fernsym	2,035	294	7	290
$\mathbf{s w g}_{1}$	TIMEOUT	18	7	>12,342
$\boldsymbol{s e g}_{1}$	TIMEOUT	16	10	>8,640
$\mathbf{s e g}_{2}$	TIMEOUT	TIMEOUT	11	>7,854

- Conclusion The best PESP-solver is now SAT-based

Further Examples

- Program Termination

Fuhs, Giesl, Middeldorp, Schneider-Kamp, Thiemann, Zankl 2007:
SAT Solving for Termination Analysis with Polynomial Interpretations.
In: Proceedings SAT Conference, LNCS 4501

- Bioinformatics

Lynce, Marques-Silva 2008:
Haplotype Inference with Boolean Satisfiability.
In: International Journal on Artificial Intelligence Tools 17, 355-387

- Bounded Model Checking

Clarke, Biere, Raimi, Zhu 2001:
Bounded Model Checking using Satisfiability Solving.
In: Formal Methods in System Design 19

