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Propositional Logic

I Definition An alphabet of propositional logic consists of

. a (countably) infinite setR of propositional variables

. the set {¬/1, ∧/2, ∨/2, →/2, ↔/2} of connectives and

. the special characters “(” and “)”

I ·/n denotes the arity of ·

I Different alphabets of propositional logic differ inR and,
hence, alphabets are usually specified by specifyingR

I In this lecture,R is usually N+
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Propositional Formulas

I Definition An atomic formula, briefly called atom, is a propositional variable

I Definition The set of propositional formulas is the smallest set L(R) of
strings over an alphabetR of propositional logic with the following properties:

1 If F is an atomic formula then F ∈ L(R)

2 If F ∈ L(R) then ¬F ∈ L(R)

3 If ◦/2 is a binary connective and F , G ∈ L(R) then (F ◦ G) ∈ L(R)

I Definition A literal is an atom or a negated atom;
The complement L of a literal L is defined as follows:

. If L is an atom A then L = ¬A

. if L is a negated atom ¬A then L = A

A pair L, L of literals is said to be complementary
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Notations and Conventions

I A (possibly indexed) denotes an atom
L (possibly indexed) denotes a literal
F , G, H (possibly indexed) denote propositional formulas
F ,G,H denote sets of propositional formulas

I It is sometimes convenient to write−n instead of ¬n, where n ∈ N+

I Let S be a set of literals

. S = {L | L ∈ S}

. S is sometimes called the complement of S
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Semantics

I The set of truth values is the set {>, ⊥}

I We consider the following functions on {>,⊥}:

. Negation ¬∗/1

. Conjunction ∧∗/2

. Disjunction ∨∗/2

. Implication →∗ /2

. Equivalence ↔∗ /2

¬∗ ∧∗ ∨∗ →∗ ↔∗
> > ⊥ > > > >
> ⊥ ⊥ ⊥ > ⊥ ⊥
⊥ > > ⊥ > > ⊥
⊥ ⊥ > ⊥ ⊥ > >
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Interpretations

I Definition An interpretation I consists of the set {>,⊥}
and a mapping ·I : L(R)→ {>,⊥} with:

[F ]I =

{
¬∗[G]I if F is of the form ¬G
([G1]I ◦∗ [G2]I ) if F is of the form (G1 ◦ G2)

I Given F ∈ L(R)

I LetRF = {A ∈ R | A occurs in F} and n = |RF |

I Definition Two interpretations I and J are equal for F , in symbols I 'F J,
iff for all A ∈ RF we find AI = AJ

I Proposition 'F is an equivalence relation defining 2n different equivalence
classes on the set of all interpretations of L(R)

I For each of the equivalence classes defined by'F we can choose
as representative the interpretation I with AI = ⊥ for all A ∈ R \RF

I Such an interpretation I is called an interpretation for F

I The set of interpretations for F is finite; its cardinality is 2n
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Models

I Definition An interpretation I for F is called model for F (I |= F ) iff [F ]I = >

I Definition
F is satisfiable iff there is a model for F

F is unsatisfiable iff there is no model for F
F is valid iff all interpretations for F are models for F

F is falsifiable iff some interpretation for F is not a model for F

I Definition An interpretation I is called model for a set G of formulas (I |= G)
iff I is a model for all F ∈ G

I The notions of satisfiability, unsatisfiability, validity and falsifiability
can be extended to sets of formulas in the obvious way
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Representation of Interpretations

I An interpretation I for F is uniquely defined by specifying how I acts onRF

. I can be represented by a sequence Î of literals fromRF ∪RF
such that L ∈ Î iff LI = >

I Note

. I is a mapping

II Î does not contain a complementary pair of literals

. I is a total mapping

II For each A ∈ RF either A ∈ Î or A ∈ Î but not both

. In the sequel, we will identify I with Î .

I Definition Let J be a sequence of literals fromRF ∪RF
such that J does not contain a complementary pair;
J is a partial interpretation for F
iff there is an A ∈ RF such that neither A ∈ J nor A ∈ J
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Some Additional Notations and Conventions

I I and J (possibly indexed) denote (partial) interpretations

I We often write F I instead of [F ]I

I We define the following precedence hierarchy among connectives:

¬ � {∨, ∧} � → � ↔

I We sometimes omit parentheses taking into account that conjunction and
disjunction are associative and commutative

I Let J be a (partial) interpretation for F and C a disjunction of literals

. J satisfies C (J |= C) iff J contains a literal occurring as disjunct in C

. J falsifies C (J 6|= C) iff for each disjunct L of C we find L ∈ J

I Let J be a sequence of literals; It it sometimes convenient to represent J
in the form I′, L, I , where L is a literal occurring in J and
I′, I are the subsequences occurring in J before and after L, respectively
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Propositional Satisfiability Problems

I Definition A propositional satisfiability problem, briefly called SAT, consists of
a formula F ∈ L(R), and is the problem to decide whether F is satisfiable

I SAT is a combinatorial decision problem

. Decision variant yes/no answer

. Search variant find a model if F is satisfiable

. All models variant find all models if F is satisfiable
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A Simple SAT Instance

I Let F = 1
∧ (1 ∨ 2)
∧ (1→ 3)
∧ (1 ∧ 3→ 4)
∧ (5 ∨ 6)
∧ (5→ 7)

∧ (5 ∨ 8)

∧ (7 ∨ 8)

I (1, 2, 3, 4, 5, 6, 7, 8) is a model for F

I Hence, F is satisfiable

I How can we find such a model?
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Model Finding – First Ideas
I Reconsider F = 1 C1 Idea

∧ (1 ∨ 2) C2 Initialize J := ( )
∧ (1→ 3) C3 and add literals to J
∧ (1 ∧ 3→ 4) C4 such that J |= Ci
∧ (5 ∨ 6) C5 for all 1 ≤ i ≤ 8
∧ (5→ 7) C6
∧ (5 ∨ 8) C7
∧ (7 ∨ 8) C8

. Because C1 we set J := (1) and thus J |= C1.

. Because 1 ∈ J we find J |= C2.

. Because 1 ∈ J and C3 we set J := (1, 3) and thus J |= C3

. Because 1, 3 ∈ J and C4 we set J := (1, 3, 4), and thus J |= C4

. None of C5 − C8 forces the addition of a literal; we choose J := (1, 3, 4, 5̇)

. Because 5 ∈ J we find J |= C5

. Because 5 ∈ J and C6 we set J := (1.3.4, 5̇, 7), and thus J |= C6

. Because 5 ∈ J and C7 we set J := (1, 3, 4, 5̇, 7, 8) and thus J |= C7

. Because 7, 8 ∈ J we find J 6|= C8; we have a conflict
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Model Finding – First Ideas Continued

I Reconsider F = 1 C1
∧ (1 ∨ 2) C2
∧ (1→ 3) C3
∧ (1 ∧ 3→ 4) C4
∧ (5 ∨ 6) C5
∧ (5→ 7) C6
∧ (5 ∨ 8) C7
∧ (7 ∨ 8). C8

. Recall J := (1, 3, 4, 5̇, 7, 8) has led to a conflict

. We backtrack and set J := (1, 3, 4, 5)

. Because 5 ∈ J and C5 we set J := (1, 3, 4, 5, 6) and thus J |= C5

. Because 5 ∈ J we find J |= C6 and J |= C7

. In order to satisfy C8 we choose J := (1, 3, 4, 5, 6, 7̇) and thus J |= C8

. J is turned into a total interpretation by adding 2, 8;
the choice was arbitrary; we could have added 2, 8 or 2, 8 or 2, 8
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Remarks and Notational Conventions

I Literals marked with a dot are called decision literals
all others are called propagation literals

I If J is a partial interpretation
then J, L is the interpretation obtained by addingL to J

. Note J, L may be total
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Decision Levels

I Partial interpretations will sometimes be written in the form

P0, L̇1, P1, . . . , L̇k , Pk ,

where Pi , 1 ≤ i ≤ k , are sequences of propagation literals

. The decision literals partition the elements of the interpretation into
decision levels

. Literals occurring in Li , Pi are assigned decision level i

I Likewise,
J, L̇, P

denotes a partial interpretation, where

. J is a partial interpretation

. L̇ is decision literal and

. P is a sequence of propagation literals

Note that L̇ is the decision literal with the highest level in J, L̇, P
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Subformulas

I Definition Let F be a propositional formula; The set of subformulas of F is the
smallest set of formulas S(F ) satisfying the following conditions:

1. F ∈ S(F )

2. If ¬G ∈ S(F ), then G ∈ S(F )

3. If G1 ◦ G2 ∈ S(F ), then G1, G2 ∈ S(F )

I Example

S(¬((p1 → p2) ∨ p1))
= {¬((p1 → p2) ∨ p1), ((p1 → p2) ∨ p1), (p1 → p2), p1, p2}
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Semantic Equivalence

I Definition Two propositional formulas F and G are semantically equivalent,
in symbols F ≡ G, iff for all interpretations I we have: I |= F iff I |= G

I Theorem Some equivalence laws:

¬¬F ≡ F double negation

¬(F ∧ G) ≡ ¬F ∨ ¬G
¬(F ∨ G) ≡ ¬F ∧ ¬G de Morgan

F ∧ (G ∨ H) ≡ (F ∧ G) ∨ (F ∧ H)
F ∨ (G ∧ H) ≡ (F ∨ G) ∧ (F ∨ H) distributivity

F ↔ G ≡ (F ∧ G) ∨ (¬G ∧ ¬F ) equivalence

F → G ≡ ¬F ∨ G implication

F ∨ G ≡ F , if F is valid
F ∧ G ≡ G, if F is valid tautology

F ∨ G ≡ G, if F is unsatisfiable
F ∧ G ≡ F , if F is unsatisfiable unsatisfiability
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Replacement

I FdG 7→ He denotes the formula obtained from F
by replacing an occurrence of G ∈ S(F ) by H

. Usually, the context determines which occurrence is meant

. Sometimes the condition G ∈ S(F ) is omitted
In this case, if G 6∈ S(F ), then FdG 7→ He = F

I Replacement Theorem If G ≡ H then FdG 7→ He ≡ F
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Generalized Disjunctions and Conjunctions

I Generalized disjunction [F1, . . . , Fn] := F1 ∨ . . . ∨ Fn

I Generalized conjunction 〈F1, . . . , Fn〉 := F1 ∧ . . . ∧ Fn

I Empty generalized disjunction [] with []I = ⊥ for all I

I Empty generalized conjunction 〈〉 with 〈〉I = > for all I

I Note n ∧ n is unsatisfiable, whereas n ∨ n is valid, where n ∈ N+

I Notation We consider 〈〉 and [] as abbreviations for 1 ∨ 1 and 1 ∧ 1, resp.
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Clauses and Conjunctive Normal Forms

I Definition

. A clause is a generalized disjunction [L1, . . . , Ln], n ≥ 0,
where every Li , 1 ≤ i ≤ n, is a literal

. A clause is a Horn clause if at most one disjunct is an atom

. A clause is a unit clause if it contains precisely one literal

. A clause is a binary clause if it contains precisely two literals

I Definition

. A formula is in conjunctive normal form (clause form, CNF) iff
it is of the form 〈C1, . . . , Cm〉, m ≥ 0, and every Cj , 1 ≤ j ≤ m, is a clause

. A formula F in CNF is a Horn formula if it contains only Horn clauses

. A formula F in CNF is said to be in n-CNF
if each clause occurring in F has at most n literals
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More Notations and Conventions

I C (possibly indexed) denotes a clause

I C, L and F , C denote C ∨ L and F ∧ C, respectively,
where C is a clause and F a CNF-formula

I Clauses and CNF-formulas are sometimes considered as
sets of literals and clauses, respectively, in which case

. Li , 1 ≤ i ≤ n, are said to be elements of [L1, . . . , Ln] and

. Cj , 1 ≤ j ≤ m, are said to be elements of 〈C1, . . . , Cm〉

Note that in sets duplicates are removed!

I It should be clear from the context whether clauses and CNF-formulas are
considered as sets or generalized disjunctions and conjunctions, respectively

I When writing C = C′, L
we do not suppose that L is the “last” literal occurring in C
but some literal occurring in C
and C′ is the disjunction or set of the “remaining” literals occurring in C

I A similar convention applies to F = F ′, C
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The Function lits

I Let lits be the following function from the set of clauses to the set of literals

lits(C) =

{
∅ if C = []
lits(C′) ∪ {L} if C = C′, L

I It is extended to a function from the set of CNF-formulas to the set of literals

lits(F ) =

{
∅ if F = 〈〉
lits(F ′) ∪ lits(C). if F = F ′, C
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The Function atoms

I Let atoms be the following function from the set of literals to the set of atoms

atoms(L) =

{
{A} if L = A
{A} if L = ¬A

I It is extended to a function from the set of clauses to the set of atoms

atoms(C) =

{
∅ if C = []
atoms(C′) ∪ atoms(L) if C = C′, L

I It is extended to a function from the set of CNF-formulas to the set of atoms

atoms(F ) =

{
∅ if F = 〈〉
atoms(F ′) ∪ atoms(C) if F = F ′, C
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Transformation into Clause Form

I Theorem There is an algorithm which transforms any propositional formula
into a semantically equivalent formula in clause form

I Observation

. All equivalences can be eliminated using the law

F ↔ G ≡ (F ∧ G) ∨ (¬F ∧ ¬G)

II F and G are copied which may lead to a combinatorial explosion!

II Construct a sequence of examples demonstrating this explosion

. All implications can be eliminated using the law

F → G ≡ ¬F ∨ G

. Hence, we assume that only the connectives ¬, ∧ and ∨ occur in formulas
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An Algorithm for the Transformation into Clause Form

I Input A propositional formula F
Output A formula, which is in conjunctive normal form and is equivalent to F
G := 〈[F ]〉 (G is a conjunction of disjunctions)
While G is not in conjunctive normal form do:

Select a non-clausal element H from G
Select a non-literal element K from H
Apply the rule among the following ones which is applicable

¬¬D
D

(D1 ∧ D2)

D1 | D2

¬(D1 ∧ D2)

¬D1,¬D2

(D1 ∨ D2)

D1, D2

¬(D1 ∨ D2)

¬D1 | ¬D2

I A rule D
D′ is applicable to K if K is of the form D

If applied, then K is replaced by D′

I A rule D
D1|D2

is applicable to K if K is of the form D
If applied, H is replaced by two disjunctions
The first one is obtained from H by replacing the occurrence of D by D1
The second one is obtained from H by replacing the occurrence of D by D2
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An Example

I Let F = p ∧ (p → q)→ q

I F is valid

I Eliminating implications yields

¬(p ∧ (¬p ∨ q)) ∨ q

I Applying the algorithm yields

〈[¬(p ∧ (¬p ∨ q)) ∨ q]〉
〈[¬(p ∧ (¬p ∨ q), q]〉
〈[¬p,¬(¬p ∨ q), q]〉
〈[¬p,¬¬p ∧ ¬q, q]〉
〈[¬p,¬¬p, q], [¬p,¬q, q]〉
〈[¬p, p, q], [¬p,¬q, q]〉

I Both clauses in the final formula contain a complementary pair of literals
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Remarks

I An application of a rule of the form D
D1|D2

may lead to copies of subformulas

. May this lead to a combinatorial explosion?

. If this is the case,
then construct a sequence of examples showing the explosion

. If this is not the case, then prove it
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Definitional Transformation

I The size of a formula may grow exponentially during normalization

I Can we do better?

. Unfortunately, the shortest CNF of some F is exponential in the size of F

. Luckily, we may use a weaker concept

I Definitional transformation Tseitin: On the complexity of derivation in
propositional calculus. Leningrad Seminar on Mathematical Logic, 1970

. Let F be a formula, G ∈ S(F ) and p 6∈ S(F ) a propositional variable

. Replace F by FdG 7→ pe ∧ (p ↔ G)

I Some observations

. F 6≡ FdG 7→ pe ∧ (p ↔ G)

. F is satisfiable iff FdG 7→ pe ∧ (p ↔ G) is satisfiable (equi-satisfiable)

. The previously mentioned exponential growth can be avoided
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Reduct of a CNF-Formula

I Definition Let F be a CNF-formula and J a partial interpretation.
The reduct of F wrt J (F |J ) is obtained by applying the following
transformations to F : For all L ∈ J do

. Remove all clauses in F which contain L

. Remove all occurrences of L

I Let F be the following formula:

〈[1], [1, 2], [1, 3], [1, 3, 4], [5, 6], [5, 7], [5, 8], [7, 8]〉

Then,
F |(1) = 〈[3], [3, 4], [5, 6], [5, 7], [5, 8], [7, 8]〉
F |(1,3) = 〈[4], [5, 6], [5, 7], [5, 8], [7, 8]〉
F |(1,3,4) = 〈[5, 6], [5, 7], [5, 8], [7, 8]〉
F |(1,3,4,5) = 〈[6], [7, 8]〉
F |(1,3,4,5,6) = 〈[7, 8]〉
F |(1,3,4,5,6,7) = 〈 〉
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Reduct of a Clause

I Definition Let C be a clause and J be a (partial or total) interpretation.
The reduct of C wrt J, in symbols C|J , is

. 〈〉 if C ∩ J 6= ∅

. the clause obtained from C by removing all occurrences of L for all L ∈ J
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Conflicts

I Definition Let F be a CNF-formula and J a (partial or total) interpretation for F
. J satisfies F (in symbols, J |= F ) iff F |J is empty

. J falsifies F (in symbols, J 6|= F ) iff F |J contains the empty clause;
In this case, J is sometimes called conflict for F
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Propositional Resolution

I In the following clauses are considered to be sets

I Definition Let C1 be a clause containing L and C2 be a clause containing L;
The (propositional) resolvent of C1 and C2 with respect to L is the clause

(C1 \ {L}) ∪ (C2 \ {L})

C is said to be a resolvent of C1 and C2 iff
there exists a literal L such that C is the resolvent of C1 and C2 wrt L
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Linear Resolution Derivations

I Definition Let C, D be clauses and F a set of formulas

. A linear resolution derivation from C wrt F
is a sequence (Di | i ≥ 0) of clauses such that

II D0 = C and

II Di is a resolvent of Di−1 and some E ∈ F for all i > 0

. A linear resolution derivation from C to D wrt F is

II a finite linear resolution derivation (Di | 0 ≤ i ≤ n) from C wrt F
II such that Dn = D
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Example: Sudoku Puzzles

I Let n ∈ N; A Sudoku puzzle

. consists of an n2 × n2 grid

. made up of n × n subgrids called blocks

. with some integers from [1, n2] placed in some cells

. where some of these placements are predefined

I The problem is

. to assign i ∈ [1, n2] to each cell of the grid such that

. each row, column and block contains exactly one occurrence
of each integer in [1, n2]

I There are more than 6× 1012 3-Sudoku puzzles

I Sudoku puzzles with n > 3 appear to be difficult to solve for humans
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A Simple 3-Sudoku

+-------+-------+-------+
| - - 4 | 2 3 9 | - - - |
| - 8 - | 5 - 6 | - - - |
| 9 - - | 8 - 4 | - 6 - |
+-------+-------+-------+
| 5 7 1 | - - - | 9 4 6 |
| 8 - - | - - - | - - 3 |
| 2 3 9 | - - - | 7 8 1 |
+-------+-------+-------+
| - - - | 4 - 8 | - - 7 |
| - - 3 | 9 - 7 | - 1 - |
| - - - | 1 2 3 | 4 - - |
+-------+-------+-------+
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A SAT Encoding of n-Sudokus (1)

I (x, y, v) represents the fact that value v is in the cell x, y

I Definedness Each cell contains one element of [1, n2]

n2∧
x=1

n2∧
y=1

n2∨
v=1

(x, y, v)

I Uniqueness for Cells Each cell has at most one value

n2∧
x=1

n2∧
y=1

n2−1∧
v=1

n2∧
w=v+1

((x, y, v)→ ¬(x, y, w))

I Uniqueness for Rows All numbers in [1, n2] must occur in every row

n2∧
x=1

n2∧
v=1

n2−1∧
y=1

n2∧
w=y+1

((x, y, v)→ ¬(x, w , v))
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A SAT Encoding of n-Sudokus (2)

I Uniqueness for Columns All numbers in [1, n2] must occur in every column

n2∧
y=1

n2∧
v=1

n2−1∧
x=1

n2∧
w=x+1

((x, y, v)→ ¬(w , y, v))

I Uniqueness for Blocks All numbers in [1, n2] must occur in every block

n−1∧
i=0

n−1∧
j=0

n·i+n∧
x=n·i+1

n·j+n∧
y=n·j+1

n2−1∧
v=1

n2∧
w=v+1

((x, y, v)→ ¬(x, y, w))

I Claim Let F be the set of formulas encoding a Sudoku puzzle
Each model for F specifies a solution for the puzzle
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Example: Planning

I Situation Calculus

I A Simple Planning Language

I Planning as Satisfiability Testing

I Solving Planning Problems
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Situation Calculus

I Situation calculus based planning as deduction McCarthy, Hayes:
Some Philosophical Problems from the Standpoint of Artificial Intelligence.
In: Machine Intelligence 4, Meltzer and Michie eds., Edinburgh University Press,
463-502: 1969

. General properties of causality, and certain obvious but until now
unformalized facts about the possibility and results of actions, are given as
axioms

. It is a logical consequence of the facts of a situation and the general axioms
that certain persons can achieve certain goals by taking certain actions

. Block a is on block b after performing action move(a, b) in state s1

on(a, b, result(move(a, b), s1))

. Inherently first-order
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Planning as Satisfiability Testing

I We are interested only in finite plans containing no more than a given
number of actions

. A restricted approach which is equivalent to a finite propositional system

. Planning as satisfiability testing instead of planning as deduction
Kautz, Selman: Planning as Satisfiability.
In: Proceedings 10th European Conference on Artificial Intelligence,
359-363: 1992
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A Simple Planning Language

I We will use schemas to denote finite sets of propositional formulas

I A schema is a function-free typed predicate logic formula with equality

. Two types: block and time

. Each type contains a finite set of individuals denoted by unique constants

II table, a, b, . . . are constants of type block

II The set constants of type time is a finite set of integers [1, n]

. The precedence order is extended to

¬ � {∨, ∧} �→�↔� {∀, ∃}

. X , Y , . . . denote variables of type block

. T denotes a variable of type time ranging over [1, n − 1]
T ′ denotes a variable of type time ranging over [1, n]

. Arithmetic expressions like T + 1 are interpreted
when schemas are written in full
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Predicates

I on(X , Y , T ) denotes that block X is on top of block Y at time T

I clear(X , T ) denotes that block X is clear at time T

I move(X , Y , Z , T ) denotes that X is moved from the top of Y to the top of Z
between T and T + 1

I X = Y denotes that X and Y are the same block
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Equality Constraints

I Equalities
{a = a | a is a constant of type block}

I Inequalities

{a 6= b | a and b are two different constants of type block}
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Initial and Goal Conditions

I Let [1, n] be the range of integers

. n states s1, . . . , sn

. n − 1 actions a1, . . . , an−1 with ai leading from si to si+1, 1 ≤ i ≤ n − 1

I Initial conditions are formulas in which only 1 appears as term of type time

. on(a, b, 1) ∧ on(b, table, 1) ∧ clear(a, 1)

I Goal conditions are formulas in which only n appears as term of type time

. With n = 3 we may consider on(b, a, 3)
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Domain Constraints

I The table is always clear (∀T ′) clear(table, T ′)

I A block except the table cannot be clear and support a block at the same time

(∀X , Y , T ′) (Y 6= table→ ¬(clear(Y , T ′) ∧ on(X , Y , T ′)))

I A block cannot be on itself (∀X , T ′)¬on(X , X , T ′)

I The table cannot be on another block (∀Y , T ′)¬on(table, Y , T ′)

I A block can only be on one block

(∀X , Y1, Y2, T ′) (on(X , Y1, T ′) ∧ on(X , Y2, T ′)→ Y1 = Y2)

I A block except the table can support only one block

(∀X1, X2, Y , T ′) (Y 6= table ∧ on(X1, Y , T ′) ∧ on(X2, Y , T ′)→ X1 = X2)
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Action Axioms

I Move X from Y to Z

(∀X , Y , Z , T )(on(X , Y , T ) ∧ clear(X , T ) ∧ clear(Z , T )
∧ X 6= Y ∧ X 6= Z ∧ Y 6= Z ∧ X 6= table
∧ move(X , Y , Z , T )
→ on(X , Z , T + 1) ∧ clear(Y , T + 1))

I Actions are only executed if their preconditions hold

(∀X , Y , Z , T )(move(X , Y , Z , T )
→ clear(X , T ) ∧ clear(Z , T ) ∧ on(X , Y , T )
∧ X 6= Y ∧ X 6= Z ∧ Y 6= Z ∧ X 6= table)
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More Action Axioms

I Only one actions occurs at a time

(∀X1, X2, Y1, Y2, Z1, Z2, T )(move(X1, Y1, Z1, T ) ∧ move(X2, Y2, Z2, T )
→ X1 = X2 ∧ Y1 = Y2 ∧ Z1 = Z2)

I Some action occurs at every time

(∀T )(∃X , Y , Z) move(X , Y , Z , T )
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Frame Axioms

I A clear block which is not covered as a result of a move action stays clear

(∀X1, X2, Y , Z , T )(clear(X2, T ) ∧ move(X1, Y , Z , T )
∧ X2 6= Y ∧ X2 6= Z
→ clear(X2, T + 1))

I A block stays on top of another one if it is not moved

(∀X1, X2, Y1, Y2, Z , T )(on(X2, Y2, T ) ∧ move(X1, Y1, Z , T ) ∧ X1 6= X2
→ on(X2, Y2, T + 1))
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Planning as Satisfiability Testing

I Let A be a set of action axioms,
F be a set of frame axioms,
D be a set of domain axioms,
E be a set of equality axioms,
S be an initial condition,
G be a goal condition,

then a planning problem is the question of whether

A ∪ F ∪ D ∪ E ∪ {S, G}

has a model
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Example

I Let a, b, table be all constants of type block

I Let [1, 3] be all constants of type time

I Consider the planning problem

A ∪ F ∪ D ∪ E ∪ {on(a, b, 1) ∧ on(b, table, 1) ∧ clear(a, 1), on(b, a, 3)}

I It has only one model (written as set instead of sequence)

{ on(a, b, 1), on(b, table, 1), clear(a, 1), move(a, b, table, 1),
on(a, table, 2), on(b, table, 2), clear(a, 2), clear(b, 2), move(b, table, a, 2),
on(a, table, 3), on(b, a, 3), clear(b, 3)}
∪ {clear(table, i) | 1 ≤ i ≤ 3} ∪ E

I We can extract the plan

move(a, b, table, 1) ∧ move(b, table, a, 2)
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Remarks

Let G be the specification of a planning problem

I Is G correct?

I What is the meaning of “correct” in this context?

I If we consider (McCarthy, Hayes 1969), then at least one needs to

. formally define the notion of a generated plan given a model of G and

. show that each generated plan is also a plan wrt the planning
as deduction approach

I Is G minimal?

I What are logical consequences of G?

I Reasoning is often easier in predicate logic

. Reasoning with schemas as first-order formulas

. But then we need to show that first-order satisfiability
corresponds to propositional satisfiability
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Solving Planning Problems

I Let G be the specification of a planning problem

I G can be solved using the following steps

. Write G in full

. Transform G into CNF

. Bijectively replace ground atoms by propositional variables

. Transform formulas into syntatic form required by a solver

. Apply the solver

. Read out the plan

I This will be demonstrated by means of our running example
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Writing Specifications in Full

I A block except the table cannot be clear and support a block at the same time

(∀X , Y , T ′) (Y 6= table→ ¬(clear(Y , T ′) ∧ on(X , Y , T ′)))

I is written in full as:

{ (a 6= table→ ¬(clear(a, 1) ∧ on(a, a, 1))),
(a 6= table→ ¬(clear(a, 2) ∧ on(a, a, 2))),
(a 6= table→ ¬(clear(a, 3) ∧ on(a, a, 3))),
(a 6= table→ ¬(clear(a, 1) ∧ on(b, a, 1))),
(a 6= table→ ¬(clear(a, 2) ∧ on(b, a, 2))),
(a 6= table→ ¬(clear(a, 3) ∧ on(b, a, 3))),
(a 6= table→ ¬(clear(a, 1) ∧ on(table, a, 1))),
(a 6= table→ ¬(clear(a, 2) ∧ on(table, a, 2))),
(a 6= table→ ¬(clear(a, 3) ∧ on(table, a, 3))),
(b 6= table→ . . .

... }
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Transformation in Conjunctive Normal Form

I A block except the table cannot be clear and support a block at the same time

(∀X , Y , T ′) (Y 6= table→ ¬(clear(Y , T ′) ∧ on(X , Y , T ′)))

I As CNF we obtain

〈 [a = table,¬clear(a, 1),¬on(a, a, 1)],
[a = table,¬clear(a, 2),¬on(a, a, 2)],
[a = table,¬clear(a, 3),¬on(a, a, 3)],
[a = table,¬clear(a, 1),¬on(b, a, 1)],
[a = table,¬clear(a, 2),¬on(b, a, 2)],
[a = table,¬clear(a, 3),¬on(b, a, 3)],
[a = table,¬clear(a, 1),¬on(table, a, 1)],
[a = table,¬clear(a, 2),¬on(table, a, 2)],
[a = table,¬clear(a, 3),¬on(table, a, 3)],
... 〉
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Introduction of Propositional Variables

I A block except the table cannot be clear and support a block at the same time

(∀X , Y , T ′) (Y 6= table→ ¬(clear(Y , T ′) ∧ on(X , Y , T ′)))

I Replacing ground atoms by natural numbers we obtain

〈 [3,¬10,¬19],
[3,¬13,¬28],
[3,¬16,¬37],
[3,¬10,¬22],
[3,¬13,¬31],
[3,¬16,¬40],
[3,¬10,¬25],
[3,¬13,¬34],
[3,¬16,¬43],
... 〉
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CNF-Form Required by the Solver

I A block except the table cannot be clear and support a block at the same time

(∀X , Y , T ′) (Y 6= table→ ¬(clear(Y , T ′) ∧ on(X , Y , T ′)))

I The solver requires formulas to be in so-called .cnf-form

p cnf nv nc
3 -10 -19 0
3 -13 -28 0
3 -16 -37 0
3 -10 -22 0
3 -13 -31 0
3 -16 -40 0
3 -10 -25 0
3 -13 -34 0
3 -16 -43 0
...

where nv and nc are the number of variables and clauses, respectively
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Application of a Solver

I Here we are applying the solver sat4j

. Check out the internet for sat4j

. In our example, nv = 99 and nc = 4299

. It uses a different mapping from ground atoms to natural numbers

. It uses a different representation of interpretations
atoms are listed iff they are mapped to>

. It yields
(1, 5, 9, 10, 11, 14, 15, 16, 17, 18, 22, 26, 27, 30, 34, 35, 56, 77)

. This translates into the model
( a = a, b = b, table = table,

clear(a, 1), clear(a, 2), clear(b, 2), clear(b, 3),
clear(table, 1), clear(table, 2), clear(table, 3),
on(a, b, 1), on(a, table, 2), on(a, table, 3),
on(b, a, 3), on(b, table, 1), on(b, table, 2),
move(a, b, table, 1), move(b, table, a, 2) )
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Reading out the Plan

I State at t = 1

〈on(a, b, 1), on(b, table, 1), clear(a, 1), clear(table, 1)〉

I Action at t = 1
move(a, b, table, 1)

I State at t = 2

〈clear(a, 2), clear(b, 2), clear(table, 2), on(a, table, 2), on(b, table, 2)〉

I Action at t = 2
move(b, table, a, 2)

I State at t = 3

〈clear(b, 3), clear(table, 3), on(a, table, 3), on(b, a, 3)〉
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Example: Periodic Event Scheduling Problems

I Periodic events occur in traffic control systems, train scheduling systems and
many other applications

I The problem is to schedule periodic events with respect to some criteria

I The problem isNP-complete

I Real world problems are often very large

. Scheduling of trains in the railway network of Germany

. Only subnetworks can be dealt with currently

I The previously best solvers were based on constraint programming techniques

I We looked into a SAT-based approach

. Großmann, H., Manthey, Nachtigall, Opitz, Steinke: Solving Periodic Event
Scheduling Problems with SAT. In: Advanced Research in Applied Artificial
Intelligence, LNCS 7345, 166-175: 2012
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Overview

I Periodic Event Networks

I Periodic Event Scheduling Problems

I Direct Encoding

I Order Encoding

I Experimental Evaluation
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Intervals

I Let l, u ∈ Z

. [l, u] = {x ∈ Z | l ≤ x ≤ u} is the interval from l to u

. l is called lower bound and u is called upper bound of the interval [l, u]

I Let [l, u] be an interval and t ∈ N

. [l, u]t =
⋃

x∈Z[l + x · t, u + x · t] is called interval from l to u modulo t

. [l, u]t ⊆ Z

. [2, 4]10 = [2, 4] ∪ [12, 14] ∪ [−8,−6] ∪ [22, 24] ∪ [−18,−6] ∪ . . .

. [l, u]0 = [l, u]
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Periodic Event Networks and Schedules

I Let (V, E) be a graph, t ∈ N, and a : E → 22Z a mapping
which assigns to each edge a finite set of intervals modulo t

. N = (V, E, a, t) is called periodic event network (PEN)

. t is called period

. The elements of V are called (periodic) events

. a(e) is called set of constraints for the edge e ∈ E

I LetN = (V, E, a, t) be a PEN and Π : V → Z

. Π is called schedule forN
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Constraints

I In PENs two types of constraints are usually distinguished:
time consuming constraints and symmetry constraints

I Here, only time consuming constraints are considered

I LetN = (V, E, a, t) be a PEN, (i, j) ∈ E, [l, u]t ∈ a(i, j),
and Π a schedule forN

. [l, u]t holds for (i, j) under Π iff Π(j)− Π(i) ∈ [l, u]t

I A schedule Π for a PENN is said to be valid
iff all constraints ofN hold under Π

Steffen Hölldobler and Norbert Manthey
SAT Problems 63



Example

I Consider the following PENN

pq

sr

[1, 3]60

[5, 10]60

[1, 2]60

I Valid schedules forN are

Π1 = {p 7→ 24, q 7→ 27, r 7→ 28, s 7→ 30}
Π2 = {p 7→ 144, q 7→ 147, r 7→ 148, s 7→ 150}
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Feasible Regions

I LetN = (V, E, a, t) be a PEN and (i, j) ∈ E

. Each [l, u]t ∈ a(i, j) constrains the possible values for i and j in a schedule

. Suppose [3, 5]10 ∈ a(i, j), then the blue regions are feasible,
whereas the other regions are infeasible wrt the constraint [3, 5]10

Π(i)

Π(j)

0

3

5

9

5 7 9

(6, 5)

(3, 8)

(6, 1)
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Equivalent Schedules

I Let Π1 and Π2 be schedules for the PENN = (V, E, a, t)

. Π1 and Π2 are equivalent, in symbols Π1 ≡ Π2,
iff for all i ∈ V we find Π1(i) mod t = Π2(i) mod t

. Proposition ≡ is an equivalence relation

. Proposition If Π1 ≡ Π2 and Π1 is valid, then Π2 is also valid

. Corollary If there exists a valid schedule Π1 forN ,
then there exists a valid schedule Π2 ≡ Π1
such that for all i ∈ V we find Π2(i) ∈ [0, t − 1]

. It suffices to search for schedules Π with Π(i) ∈ [0, t − 1] for all i ∈ V
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Periodic Event Scheduling Problems

I A periodic event scheduling problem (PESP) consists of a PENN
and is the question whether there exists a valid schedule forN

. PESP is decidable

. PESP isNP-complete

. If there exists a valid schedule, then the schedule shall be computed

. Until 2011 the best PESP-solvers were based on constraint propagation
techniques (Opitz: Automatische Erzeugung und Optimierung von
Taktfahrplänen in Schienenverkehrsnetzen. PhD thesis, TU Dresden: 2009)
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Direct Encoding of Variables with Finite Domain

I Let x be a variable with finite domain D

. Variables are encoded with the help of propositional variables px,k
such that px,k is mapped to> iff the value of x is k

. The direct encoding of x is

(
∨

k∈D

px,k ) ∧ (
∧

k∈D

∧
l∈D\{k}

¬(px,k ∧ px,l ))

. The direct encoding of x ∈ [2, 3] is

(px,2 ∨ px,3) ∧ ¬(px,2 ∧ px,3) ∧ ¬(px,3 ∧ px,2)
≡ (px,2 ∨ px,3) ∧ (¬px,2 ∨ ¬px,3)
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Direct Encoding of Values for Events

I LetN = (V, E, a, t) be a PEN

. Each schedule Π will assign a value from [0, t − 1] to each i ∈ V

. Hence, we obtain the following direct encoding for Π(i)

Fi = (
∨

k∈[0,t−1]

pΠ(i),k ) ∧ (
∧

k∈[0,t−1]

∧
l∈[0,t−1]\{k}

¬(pΠ(i),k ∧ pΠ(i),l ))

. Let
FE =

∧
i∈V

Fi
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Direct Encoding of Time Consuming Constraints

I LetN = (V, E, a, t) be a PEN

. Each constraint ofN defines an infeasible region

. Each infeasible region can be encoded as the negation of the disjunction of
all points in the region

. Let FT be the conjunction of these encodings for all constraints inN

I The direct encoding of a PENN is

FN = FE ∧ FT

. FN will be simplified and normalized before being submitted to a SAT-solver
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Encoding Variables with Finite Ordered Domain

I We consider variables, whose domain is finite and ordered

. Here, we consider as domain intervals (modulo some t ∈ N)

. x with domain [1, 3]

I Variables are encoded with the help of propositional variables qx,j
such that qx,j is mapped to> iff x ≤ j

I Let x be a variable with domain [l, u]

. The order encoding of x is

¬qx,l−1 ∧ qx,u ∧
∧

j∈[l,u]

(¬qx,j−1 ∨ qx,j )

. The order encoding of x with domain [1, 3] is

〈[¬qx,0], [qx,3], [¬qx,0, qx,1], [¬qx,1, qx,2], [¬qx,2, qx,3]〉
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Simplifying the Order Encoding

I Recall

〈[¬qx,0], [qx,3], [¬qx,0, qx,1], [¬qx,1, qx,2], [¬qx,2, qx,3]〉 = F

and observe that [¬qx,0] and [qx,3] are unit clauses

I Hence, any model for F must contain ¬qx,0 and qx,3, and

F |(qx,3,¬qx,0) = 〈[¬qx,1, qx,2]〉.

I Let x be a variable with domain [l, u] and Fx its order encoding, then

Fx |(qu,¬qx,l−1) =
∧

j∈[l+1,u−1]

(¬qx,j−1 ∨ qx,j ).

The latter is called simplified order encoding of x

I The simplified order encoding of x with domain [2, 3] or [5, 5] is 〈〉
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Order Encoding of Values for Events

I LetN = (V, E, a, t) be a PEN

. Each schedule Π will assign a value from [0, t − 1] to each i ∈ V

. Hence, we obtain the following order encoding for Π(i)

Gi = ¬qΠ(i),−1 ∧ qΠ(i),t−1 ∧
∧

j∈[1,t−1]

(¬qΠ(i),j−1 ∨ qΠ(i),j ).

. Let
GE =

∧
i∈V

Gi

Steffen Hölldobler and Norbert Manthey
SAT Problems 73



Order Encoding of Time Consuming Constraints – Idea
I LetN = (V, E, a, t) be a PEN, (i, j) ∈ E, and [3, 5]10 ∈ a(i, j)

. In the following figure, the red square is infeasible, i.e.,

{(Π(i), Π(j)) | Π(i) ∈ [4, 7], Π(j) ∈ [3, 6]}

Π(i)

Π(j)

4 7

3

6

0

3

5

9

5 7 9

I Idea Encode sufficiently many squares to cover the infeasible regions
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Order Encoding an Infeasible Square

I Reconsider {(Π(i), Π(j)) | Π(i) ∈ [4, 7], Π(j) ∈ [3, 6]}

. We obtain

¬(Π(i) ≥ 4 ∧ Π(i) ≤ 7 ∧ Π(j) ≥ 3 ∧ Π(j) ≤ 6)
≡ ¬(¬Π(i) < 4 ∧ Π(i) ≤ 7 ∧ ¬Π(j) < 3 ∧ Π(j) ≤ 6)
≡ ¬(¬Π(i) ≤ 3 ∧ Π(i) ≤ 7 ∧ ¬Π(j) ≤ 2 ∧ Π(j) ≤ 6)
≡ (Π(i) ≤ 3 ∨ ¬Π(i) ≤ 7 ∨ Π(j) ≤ 2 ∨ ¬Π(j) ≤ 6)
= [qΠ(i),3,¬qΠ(i),7, qΠ(j),2,¬qΠ(j),6]

The final formula is the encoding of the given infeasible square

I Suppose [i, j]t was the k th constraint of a(i, j) wrt some PENN
(assuming some ordering)

. Let Gijk denote the conjunction of encodings of infeasible squares
necessary to cover the infeasible regions wrt [i, j]t
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Order Encoding of Time Consuming Constraints

I LetN = (V, E, a, t) be a PEN

GT =
∧

i∈V

∧
j∈V

∧
k∈a(i,j)

Gijk

is the encoding of the time consuming constaints ofN

I The order encoding of a PENN is

GN = GE ∧ GT

. GN will be simplified and normalized before being submitted to a SAT-solver
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Experimental Evaluation

I Cooperation with the Traffic Flow Science Group at the
Faculty of Transportation and Traffic Science of TU Dresden

I Based on data from the Deutsche Bahn AG

I We compared

. PESPSOLVE, a state-of-the-art constaint-based PESP-solver

. DIRECT+RISS, the state-of-the-art SAT-solver RISS using direct encoding

. ORDERED+RISS, RISS using ordered encoding

I All solvers were given a timeout of 24h = 86400s

I The experiments were run on a Intel Core i7 with 8 GB RAM
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Number of Variables and Clauses

N = (V, E, a, t) direct encoding FN order encoding GN
instance |V| #a |var(FN )| |FN | |var(GN )| |GN |

swg2 60 1,145 7,200 2,037,732 7,140 83,740
fernsym 128 3,117 15,360 6,657,955 15,232 353,276

swg4 170 7,107 20,400 6,193,570 20,230 399,191
swg3 180 2,998 21,600 4,874,144 21,420 214,011
swg1 221 7,443 26,520 7,601,906 26,299 462,217
seg2 611 9,863 73,320 25,101,341 72,709 1,115,210
seg1 1,483 10,351 177,960 34,323,942 176,477 1,348,045

I Notation

. #a denotes the number of constraints given by a

. var(X) denotes the number of variables occurring in X

. |X | denotes the cardinality of the set X
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Results

instance PESPSOLVE/s DIRECT+RISS/s ORDERED+RISS/s speedup
swg3 66 50 2 33
swg2 512 37 2 256
swg4 912 752 8 114

fernsym 2,035 294 7 290
swg1 TIMEOUT 18 7 >12,342
seg1 TIMEOUT 16 10 >8,640
seg2 TIMEOUT TIMEOUT 11 >7,854

I Conclusion The best PESP-solver is now SAT-based
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Further Examples

I Program Termination
Fuhs, Giesl, Middeldorp, Schneider-Kamp, Thiemann, Zankl 2007:
SAT Solving for Termination Analysis with Polynomial Interpretations.
In: Proceedings SAT Conference, LNCS 4501

I Bioinformatics
Lynce, Marques-Silva 2008:
Haplotype Inference with Boolean Satisfiability.
In: International Journal on Artificial Intelligence Tools 17, 355-387

I Bounded Model Checking
Clarke, Biere, Raimi, Zhu 2001:
Bounded Model Checking using Satisfiability Solving.
In: Formal Methods in System Design 19
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