SAT Solving - Conflict Analysis

Steffen Hölldobler and Norbert Manthey
International Center for Computational Logic Technische Universität Dresden Germany

- Conflict Analysis
- Implication Graphs
- Unique Implication Points

Conflict Analysis - Warm Up

- Given a formiula F, and interpretation J and a clause C, and the current decision level is n.
\triangleright (we always prefer termination and unit propagation over search)

Conflict Analysis - Warm Up

- Given a formiula F, and interpretation J and a clause C, and the current decision level is \boldsymbol{n}.
\triangleright (we always prefer termination and unit propagation over search)
- When is C a conflict clause?

Conflict Analysis - Warm Up

- Given a formiula F, and interpretation J and a clause C, and the current decision level is n.
\triangleright (we always prefer termination and unit propagation over search)

When is C a conflict clause?

- Which $\mathbf{2}$ properties do we like to have from learned clauses?

Conflict Analysis - Warm Up

- Given a formiula F, and interpretation J and a clause C, and the current decision level is n.
\triangleright (we always prefer termination and unit propagation over search)

When is C a conflict clause?

- Which 2 properties do we like to have from learned clauses?
- How many literals in C have at least the decision level n ?

Conflict Analysis - Advanced Implementation

Example of the sophisticated linear resolution derivation algorithm

Conflict Analysis - Revisited

- Let F be a formula in CNF, L a literal, and J a partial interpretation.
- $C \in F$ is called conflict clause under J iff $\left.C\right|_{J}=[]$.

Conflict Analysis - Revisited

- Let F be a formula in CNF, L a literal, and J a partial interpretation.
- $C \in F$ is called conflict clause under J iff $\left.C\right|_{J}=[]$.
- A clause C is relevant for L (or is a reason for L) in $F:: J$ iff $C \in F$ and there exist I^{\prime} and I such that $J=I^{\prime}, L, I$ and $\left.C\right|_{I}=[L]$.
- relevantL $(L, F:: J)=\{C \in F \mid C$ is relevant for L in $F:: J\}$.

Conflict Analysis - Revisited

- Let F be a formula in CNF, L a literal, and J a partial interpretation.
- $C \in F$ is called conflict clause under J iff $\left.C\right|_{J}=[]$.
- A clause C is relevant for L (or is a reason for L) in $F:: J$ iff $C \in F$ and there exist I^{\prime} and I such that $J=I^{\prime}, L, I$ and $\left.C\right|_{I}=[L]$.
- relevantL $(L, F:: J)=\{C \in F \mid C$ is relevant for L in $F:: J\}$.
- A clause C is relevant (or is a reason clause) in $F:: J$ iff there exists an L such that C is relevant for L in $F:: J$.
- relevant $(F:: J)=\{C \in F \mid C$ is relevant in $F:: J\}$.

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1}, 3,2) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \mathbf{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \overline{\mathbf{1}}, \mathbf{3}, \mathbf{2}) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

- We find

$$
\text { relevantL }(\overline{4}, F::(\overline{4}, \dot{1}, 3,2))=\{[\overline{4}]\}
$$

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1}, 3,2) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

- We find

$$
\begin{aligned}
\text { relevantL(} \overline{4}, F::(\overline{4}, \overline{1}, 3,2)) & =\{[\overline{4}]\} \\
\text { relevantL }(1, F::(\overline{4}, \overline{1}, 3,2)) & =\emptyset
\end{aligned}
$$

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1}, \mathbf{3}, \mathbf{2}) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

- We find

$$
\begin{aligned}
\text { relevantL }(\overline{4}, F::(\overline{4}, \dot{1}, \mathbf{3}, 2)) & =\{[\overline{4}]\} \\
\text { relevantL }(1, F::(\overline{4}, \overline{1}, 3,2)) & =\emptyset \\
\text { relevantL }(3, F::(\overline{4}, \overline{1}, 3,2)) & =\{[\overline{1}, 3]\}
\end{aligned}
$$

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{2}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1}, \mathbf{3}, \mathbf{2}) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

- We find

$$
\begin{aligned}
\text { relevantL }(\overline{4}, F::(\overline{4}, \dot{1}, 3,2)) & =\{[\overline{4}]\} \\
\text { relevantL }(1, F::(\overline{4}, \overline{1}, 3,2)) & =\emptyset \\
\operatorname{relevantL}(3, F::(\overline{4}, \dot{1}, 3,2)) & =\{[\overline{1}, 3]\} \\
\operatorname{relelevantL}(2, F::(\overline{4}, \dot{1}, 3,2)) & =\{[2, \overline{3}]\}
\end{aligned}
$$

An Old Example Revisited

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim \text { UNIT } & F::(\overline{4}) & \left(\left.F\right|_{(\overline{4})}=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}],[\overline{1}, 3]\rangle\right) \\
& \sim \text { DECIDE } & F::(\overline{4}, \dot{1}) & \left(\left.F\right|_{(\overline{4}, 1)}=\langle[2, \overline{3}],[\overline{2}, \overline{3}],[3]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \dot{1} 3) & \left(\left.F\right|_{(\overline{4}, 1,3)}=\langle[2],[\overline{[}]\rangle\right) \\
& \sim \text { UNIT } & F::(\overline{4}, \mathbf{1}, \mathbf{3}, \mathbf{2}) & \left(\left.F\right|_{(\overline{4}, 1,3,2)}=\langle[]\rangle\right)
\end{array}
$$

- We find

$$
\begin{aligned}
\operatorname{relevantL}(\overline{4}, F::(\overline{4}, \dot{1}, 3,2)) & =\{[\overline{4}]\} \\
\operatorname{relevantL}(1, F::(\overline{4}, \overline{1}, 3,2)) & =\emptyset \\
\operatorname{relevantL}(3, F::(\overline{4}, \overline{1}, 3,2)) & =\{[\overline{1}, 3]\} \\
\operatorname{relevantL}(2, F::(\overline{4}, \dot{1}, 3,2)) & =\{[2, \overline{3}]\} \\
\operatorname{relelevant}(F::(\overline{4}, \overline{1}, 3,2)) & =\{[\overline{4}],[\overline{1}, 3],[2, \overline{3}]\}
\end{aligned}
$$

Another Example

- Consider $F=\langle[\overline{1}, \overline{3}, 4],[\overline{2}, \overline{3}, 4]\rangle$.
- We may obtain

$$
\begin{array}{rllr}
F::() & \sim_{\text {DECIDE }} & F::(\dot{\mathbf{1}}) & \left(\left.F\right|_{(1)}=\langle[\overline{3}, 4],[\overline{2}, \overline{3}, 4]\rangle\right) \\
& \sim_{\text {DECIIEE }} & F::(\overline{\mathbf{1}}, \dot{\mathbf{2}}) & \left(\left.F\right|_{(1,2)}=\langle[\overline{3}, 4],[\overline{3}, 4]\rangle\right) \\
& \overbrace{\text { DECIDE }} & F::(\dot{\mathbf{1}}, \dot{\mathbf{2}}, \dot{\mathbf{3}}) & \left(\left.F\right|_{(1,2,3)}=\langle[4],[4]\rangle\right) \\
& \sim \text { UNIT } & F::(\dot{\mathbf{1}}, \dot{\mathbf{2}}, \dot{\mathbf{3}}, 4) & \left(F\left|\left.\right|_{(1,2,3,4)}=\langle \rangle\right)\right. \\
& \sim_{\text {SAT }} & \text { SAT } &
\end{array}
$$

- We find

$$
\text { relevantL(4, F:: }(\dot{1}, \dot{2}, \dot{3}, 4))=\{[\overline{1}, \overline{3}, 4],[\overline{2}, \overline{3}, 4]\}
$$

Multiple Conflict Clauses

- In the sequel
\triangleright we will apply UNIT whenever possible,
\triangleright we will prefer literals wrt their absolut value,
\triangleright we prefer positive over negative literals.
- Consider $F=\langle[\overline{1}, 2],[\overline{1}, 3],[\overline{1}, 4],[\overline{2}, \overline{4}],[\overline{3}, \overline{4}]\rangle$.
- We obtain

$$
\begin{array}{rllr}
F::() & \leadsto \text { DECIDE } & F::(\mathbf{1}) & \left(\left.F\right|_{(1)}=\langle[2],[3],[4],[\overline{2}, \overline{4}],[\overline{3}, \overline{4}]\rangle\right) \\
& \leadsto \text { UNIT } & F::(\mathbf{1}, \mathbf{2}) & \left(\left.F\right|_{(1,2)}=\langle[3],[4],[\overline{4}],[\overline{3}, \overline{4}]\rangle\right) \\
& \leadsto \text { UNIT } & F::(\overline{\mathbf{1}}, \mathbf{2}, \mathbf{3}) & \left(\left.F\right|_{(1,2,3)}=\langle[4],[\overline{4}],[4]\rangle\right) \\
& \leadsto \text { UNIT } & F:(\mathbf{1}, \mathbf{2}, \mathbf{3}, 4) & \left(\left.F\right|_{(1,2,3,4)}=\langle[],[]\rangle\right)
\end{array}
$$

- There are two conflict clauses, viz. $[\overline{2}, \overline{4}]$ and $[\overline{3}, \overline{4}]$.

Multiple Conflicts

- Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
\triangleright after an application of UNIT to some $F:: J$ and
\triangleright if $\left.F\right|_{J}$ contains two unit clauses $[A]$ and $[\bar{A}]$.

Multiple Conflicts

- Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
\triangleright after an application of UNIT to some $F:: J$ and
\triangleright if $\left.F\right|_{J}$ contains two unit clauses $[A]$ and $[\bar{A}]$.
- Consider $F=\langle[\overline{1}, \overline{2}, 3],[\overline{2}, \overline{3}]\rangle$.
\triangleright We obtain

$$
\begin{array}{rllr}
F::() & \sim D E C I D E & F::(\mathbf{1}) & \left(\left.F\right|_{(1)}=\langle[\overline{2}, 3],[\overline{2}, \overline{3}]\rangle\right) \\
& \sim D E C I D E & F::(\mathbf{1}, \dot{2}) & \left(\left.F\right|_{(1,2)}=\langle[3],[\overline{3}]\rangle\right)
\end{array}
$$

Multiple Conflicts

- Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
\triangleright after an application of UNIT to some $F:: J$ and
\triangleright if $\left.F\right|_{J}$ contains two unit clauses $[A]$ and $[\bar{A}]$.
- Consider $F=\langle[\overline{1}, \overline{2}, 3],[\overline{2}, \overline{3}]\rangle$.
\triangleright We obtain

$$
\begin{array}{rllr}
F::() & \sim D E C I D E & F::(\mathbf{1}) & \left(\left.F\right|_{(1)}=\langle[\overline{2}, 3],[\overline{2}, \overline{3}]\rangle\right) \\
& \sim D E C I D E & F::(\mathbf{1}, \dot{\mathbf{2}}) & \left(\left.F\right|_{(1,2)}=\langle[3],[\overline{3}]\rangle\right)
\end{array}
$$

\triangleright Two different conflicts are obtained
\rightarrow by applying unit wrt [3] or [3]
\rightarrow yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.

Multiple Conflicts

- Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
\triangleright after an application of UNIT to some $F:: J$ and
\triangleright if $\left.F\right|_{J}$ contains two unit clauses $[A]$ and $[\bar{A}]$.
- Consider $F=\langle[\overline{1}, \overline{2}, 3],[\overline{2}, \overline{3}]\rangle$.
\triangleright We obtain

$$
\begin{array}{rllr}
F::() & \sim D E C I D E & F::(\mathbf{1}) & \left(\left.F\right|_{(1)}=\langle[\overline{2}, 3],[\overline{2}, \overline{3}]\rangle\right) \\
& \sim D E C I D E & F::(\mathbf{1}, \dot{\mathbf{2}}) & \left(\left.F\right|_{(1,2)}=\langle[3],[\overline{3}]\rangle\right)
\end{array}
$$

\triangleright Two different conflicts are obtained
\rightarrow by applying unit wrt [3] or [3]
\rightarrow yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.

- We assume that one particular conflict is selected.

Multiple Conflicts

- Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
\triangleright after an application of UNIT to some $F:: J$ and
\triangleright if $\left.F\right|_{J}$ contains two unit clauses $[A]$ and $[\bar{A}]$.
- Consider $F=\langle[\overline{1}, \overline{2}, 3],[\overline{2}, \overline{3}]\rangle$.
\triangleright We obtain

$$
\begin{array}{rllr}
F::() & \sim D E C I D E & F::(\mathbf{1}) & \left(\left.F\right|_{(1)}=\langle[\overline{2}, 3],[\overline{2}, \overline{3}]\rangle\right) \\
& \sim D E C I D E & F::(\mathbf{1}, \dot{\mathbf{2}}) & \left(\left.F\right|_{(1,2)}=\langle[3],[\overline{3}]\rangle\right)
\end{array}
$$

\triangleright Two different conflicts are obtained
\rightarrow by applying unit wrt [3] or [3]
\rightarrow yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.

- We assume that one particular conflict is selected.
- As we will see later, this selection is not very important.

Implication Graphs

- In the sequel we assume that \mid relevantL $(L, F:: J) \mid \leq 1$ for all L.
\triangleright If \mid relevantL $(L, F:: J) \mid>1$ for some L, then
\rightarrow all relevant clauses wrt L except one are deleted and
\rightarrow we write relevantL $(L, F:: J)=C$ instead of relevantL $(L, F:: J)=\{C\}$.
\triangleright Different selections lead to different implication graphs.

Implication Graphs

- In the sequel we assume that \mid relevantL $(L, F:: J) \mid \leq 1$ for all L.
\triangleright If \mid relevant $L(L, F:: J) \mid>1$ for some L, then
\rightarrow all relevant clauses wrt L except one are deleted and
\rightarrow we write relevantL $(L, F:: J)=C$ instead of relevantL $(L, F:: J)=\{C\}$.
\triangleright Different selections lead to different implication graphs.
- Let F be a formula in CNF and J a partial interpretation.
- The explanation of L^{\prime} is the set $\left\{\bar{L} \mid L \in\right.$ relevant $\left.L\left(L^{\prime}, F:: J\right) \backslash\left\{L^{\prime}\right\}\right\}$
- An implication graph for $F:: J$ is a graph $(\mathcal{V}, \mathcal{E})$, where
$\triangleright \mathcal{V}=\boldsymbol{J}$,
$\triangleright \mathcal{E}=\left\{\left(L, L^{\prime}\right) \in \mathcal{V} \times \mathcal{V} \mid\right.$ there exists $C=\operatorname{relevantL}\left(L^{\prime}, F:: J\right)$ and $\bar{L} \in$ (C $\left.\backslash\left\{L^{\prime}\right\}\right\}$,
\triangleright each $\left(L, L^{\prime}\right) \in \mathcal{E}$ is directed from L to L^{\prime}.

Implication Graphs

- In the sequel we assume that \mid relevantL $(L, F:: J) \mid \leq 1$ for all L.
\triangleright If \mid relevant $L(L, F:: J) \mid>1$ for some L, then
- all relevant clauses wrt L except one are deleted and
\rightarrow we write relevantL $(L, F:: J)=C$ instead of relevantL $(L, F:: J)=\{C\}$.
\triangleright Different selections lead to different implication graphs.
- Let F be a formula in CNF and J a partial interpretation.
- The explanation of L^{\prime} is the set $\left\{\bar{L} \mid L \in\right.$ relevant $\left.L\left(L^{\prime}, F:: J\right) \backslash\left\{L^{\prime}\right\}\right\}$
- An implication graph for $F:: J$ is a graph $(\mathcal{V}, \mathcal{E})$, where
$\triangleright \mathcal{V}=\boldsymbol{J}$,
$\triangleright \mathcal{E}=\left\{\left(L, L^{\prime}\right) \in \mathcal{V} \times \mathcal{V} \mid\right.$ there exists $C=\operatorname{relevantL}\left(L^{\prime}, F:: J\right)$ and $\bar{L} \in$ (C $\left.\backslash\left\{L^{\prime}\right\}\right\}$,
\triangleright each $\left(L, L^{\prime}\right) \in \mathcal{E}$ is directed from L to L^{\prime}.
- It is sometimes convenient
\triangleright to label a vertex by its decision level in J (depicted as subscript)
\triangleright to label an edge by the clause who caused it (the reason).

Implication Graphs for an Old Example
Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
\triangleright Consider $J_{1}=(\overline{4}, \overline{1}, 3)$
$\rightarrow \operatorname{relevant}\left(L, F:: J_{1}\right)=\{[\overline{4}],[\overline{1}, 3]\}$

$\overline{4}_{0}$

Implication Graphs for an Old Example

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$
\triangleright Consider $J_{1}=(\overline{4}, \overline{1}, 3)$
$\rightarrow \operatorname{relevant}\left(L, F:: J_{1}\right)=\{[\overline{4}],[\overline{1}, 3]\}$

\triangleright Consider $J_{2}=(\overline{4}, 1,3,2)$
$\rightarrow \operatorname{relevant}\left(L, F:: J_{2}\right)=\{[\overline{4}],[\overline{1}, 3],[\overline{3}, 2]\}$

Implication Graphs - Another Example

- Let $F=\langle[\overline{1}, 8],[\overline{2}, \overline{4}, \overline{5}],[\overline{3}, \overline{9}],[\overline{2}, \overline{7}, 9],[4,7],[\overline{6}, 7]\rangle$
- Let $J=(\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1})$.

Conflict Graphs

- Consider $F:: J$ and let $(\mathcal{V}, \mathcal{E})$ be the implication graph for $F:: J$.
- Let $C \in F$ and suppose $\left.C\right|_{J}=[]$.
- $\left(\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right)$ is the conflict graph for $F:: J$ and C if $\triangleright \mathcal{V}^{\prime}=\mathcal{V} \cup\{0\}$ and
$\triangleright \mathcal{E}^{\prime}=\mathcal{E} \cup\{(L, 0) \mid L \in \mathcal{V}$ and $\bar{L} \in C\}$.
- 0 is called conflict node.
- Conflict graphs are acyclic.

The Conflict Graph of an Old Example

- Let $F=\langle[1,2],[2, \overline{3}],[\overline{2}, \overline{3}, 4],[\overline{1}, 3],[\overline{4}]\rangle$.
- Consider $J=(2,3,1, \overline{4})$.
- Note $\left.[\overline{2}, \overline{3}, 4]\right|_{J}=[]$.

Conflict Graphs - Another Example (1)

\rightarrow Let $F=\langle[\overline{1}, 8],[\overline{2}, \overline{4}, \overline{5}],[\overline{3}, \overline{9}],[\overline{2}, \overline{7}, 9],[4,7],[\overline{6}, 7],[\overline{4}, 5,6],[5,6,9]\rangle$.

- Let $J=(\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1})$.
\rightarrow Note $\left.[\overline{4}, \mathbf{5}, 6]\right|_{J}=[]$.

Conflict Graphs - Another Example (2)

- Let $F=\langle[\overline{1}, 8],[\overline{2}, \overline{4}, \overline{5}],[\overline{3}, \overline{9}],[\overline{2}, \overline{7}, 9],[4,7],[\overline{6}, 7],[\overline{4}, 5,6],[5,6,9]\rangle$.
- Let $J=(\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1})$.
- Note There is another conflict clause $\left.[5,6,9]\right|_{J}=[]$.

Reduced Conflict Graph

- Let $(\mathcal{V}, \mathcal{E})$ be a conflict graph.
- The reduced conflict graph of $(\mathcal{V}, \mathcal{E})$ is the subgraph of $(\mathcal{V}, \mathcal{E})$ containing all vertices which are connected to 0 and all edges between these vertces.

- In the sequel, we consider only reduced conflict graphs.

Paths

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- Let $\mathcal{V}_{S}=\{L \in \mathcal{V} \mid L$ is a decision literal or its decision level is 0$\}$.
- Let paths $(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from nodes in \mathcal{V}_{S} to 0 in $(\mathcal{V}, \mathcal{E})$.
- Consider

$\triangleright \mathcal{V}_{S}=\{1, \overline{4}\}$.
$\triangleright \operatorname{paths}(\mathcal{V}, \mathcal{E})=\{(1,3,2,0),(1,3,0),(\overline{4}, 0)\}$.

Paths - Another Example

- Consider

$\triangleright \mathcal{V}_{S}=\{2,3\}$
$\triangleright \operatorname{paths}(\mathcal{V}, \mathcal{E})=\{(2, \overline{5}, 0),(2, \overline{7}, 4, \overline{5}, 0),(2, \overline{7}, 4,0),(2, \overline{7}, \overline{6}, 0)$, $(3, \overline{9}, \overline{7}, 4, \overline{5}, 0),(3, \overline{9}, \overline{7}, 4,0),(3, \overline{9}, \overline{7}, \overline{6}, 0)\}$

Cuts

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- \mathbf{A} cut $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ through $(\mathcal{V}, \mathcal{E})$ is a partition of \mathcal{V} into \mathcal{V}_{R} and \mathcal{V}_{C} such that
$\triangleright \mathcal{V}_{R} \cap \mathcal{V}_{C}=\emptyset$,
$\triangleright \mathcal{V}_{R} \cup \mathcal{V}_{C}=\mathcal{V}$,
$\triangleright \mathcal{V}_{S} \subseteq \mathcal{V}_{R}$,
$\triangleright\{0\} \subseteq \mathcal{V}_{C}$, and
\triangleright each $p \in \operatorname{paths}(\mathcal{V}, \mathcal{E})$ is partitioned into two subpaths p_{R} and p_{C} such that $\rightarrow p_{R}$ and p_{C} have no vertex in common,
$\rightarrow p$ is obtained by adding an edge from the end of p_{R} to the start of p_{C},
$\rightarrow \mathcal{V}_{R}$ contains all vertices occurring in p_{R}, and
$\rightarrow \mathcal{V}_{C}$ contains all vertices occurring in p_{C}.

Cuts - Example

- Consider

Cut Clauses

- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through a reduced conflict graph $(\mathcal{V}, \mathcal{E})$.
- Let $\left(\mathcal{V}_{R}, \mathcal{E}_{R}\right)$ be the subgraph of $(\mathcal{V}, \mathcal{E})$ which consists only of the vertices \mathcal{V}_{R} and edges between elements of \mathcal{V}_{R}.
- Let \mathcal{V}_{R}^{\prime} be the subset of \mathcal{V}_{R} containing all vertices, where an outgoing edge was cut by $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$.
- The cut clause C_{R} determined by $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ is the clause $\overline{\mathcal{V}_{R}^{\prime}}$.

Cut Clauses - Example

- Consider

Initial Cuts

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ is an initial cut if $\mathcal{V}_{C}=\{0\}$.

$$
C_{R}=[5,6,9]
$$

- Note The cut clause is the conflict clause.

Shifted Cuts

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- Recall $\mathcal{V}_{S}=\{L \in \mathcal{V} \mid L$ is a decision literal or its decision level is 0$\}$.
- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- Let $\left(\mathcal{V}_{R}, \mathcal{E}_{R}\right)$ be the subgraph of $(\mathcal{V}, \mathcal{E})$ which consists only of the vertices \mathcal{V}_{R} and edges between elements of \mathcal{V}_{R}.
- Let $L \in \mathcal{V}_{R} \backslash \mathcal{V}_{S}$ such that the outdegree of L in $\left(\mathcal{V}_{R}, \mathcal{E}_{R}\right)$ is 0 .
- $\left(\mathcal{V}_{R} \backslash\{L\}, \mathcal{V}_{C} \cup\{L\}\right)$ is the cut obtained from $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ by shifting L.

Shifted Cuts - Examples

Corresponding Linear Resolution Derivation

- We obtain

1	$[\overline{3}, \overline{9}]$	relevant clause
2	$[\overline{\mathbf{2}}, \overline{\mathbf{7}}, 9]$	relevant clause
3	$[\mathbf{4}, 7]$	relevant clause
4	$[\overline{6}, 7]$	relevant clause
5	$[\overline{\mathbf{2}}, \overline{\mathbf{4}}, \overline{5}]$	relevant clause
6	$[5,6,9]$	conflict clause
7	$[\overline{\mathbf{2}}, \overline{\mathbf{4}}, \mathbf{6}, 9]$	$\operatorname{res}(6,5)$
8	$[\overline{\mathbf{2}}, \overline{4}, 7,9]$	$\operatorname{res}(7,4)$
9	$[\overline{2}, 7,9]$	$\operatorname{res}(8,3)$
10	$[\mathbf{2}, 9]$	$\operatorname{res}(9,2)$
11	$[\overline{\mathbf{2}}, \overline{3}]$	$\operatorname{res}(10,1)$

Corresponding Linear Resolution Derivation

- We obtain

1	$[\overline{3}, \overline{9}]$	relevant clause
2	$[\overline{\mathbf{2}}, \overline{\mathbf{7}}, 9]$	relevant clause
3	$[\mathbf{4}, 7]$	relevant clause
4	$[\overline{6}, 7]$	relevant clause
5	$[\overline{2}, \overline{4}, \overline{5}]$	relevant clause
6	$[5,6,9]$	conflict clause
7	$[\overline{\mathbf{2}}, \overline{\mathbf{4}}, \mathbf{6}, 9]$	$\operatorname{res}(6,5)$
8	$[\overline{\mathbf{2}}, \overline{\mathbf{4}}, 7,9]$	$\operatorname{res}(7,4)$
9	$[\overline{\mathbf{2}}, \mathbf{7}, 9]$	$\operatorname{res}(8,3)$
10	$[\overline{\mathbf{2}}, 9]$	$\operatorname{res}(9,2)$
11	$[\overline{\mathbf{2}}, \overline{3}]$	$\operatorname{res}(10,1)$

- Observation Cut-clauses corresponding to a cut, which was generated by a sequence of shifts from the initial cut, can also be generated by linear resolution derivations from the conflict clause using relevant clauses.

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $L^{*} \in \mathcal{V}$ be the decision literal with the highest decision level in \mathcal{V}.
$\triangleright L^{*}$ is unique.
Let paths* $(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^{*} to 0 in $(\mathcal{V}, \mathcal{E})$. \triangleright paths $^{*}(\mathcal{V}, \mathcal{E}) \subseteq \operatorname{paths}^{(\mathcal{V}, \mathcal{E})}$.

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $L^{*} \in \mathcal{V}$ be the decision literal with the highest decision level in \mathcal{V}.
$\triangleright L^{*}$ is unique.
- Let paths* $(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^{*} to 0 in $(\mathcal{V}, \mathcal{E})$.
\triangleright paths $^{*}(\mathcal{V}, \mathcal{E}) \subseteq \operatorname{paths}^{(\mathcal{V}, \mathcal{E})}$.
- $L \in \mathcal{V}$ is a unique implication point (UIP) if it occurs in all paths in paths* $(\mathcal{V}, \mathcal{E})$.
$\triangleright L^{*}$ is always a UIP.
\triangleright The decision level of an UIP is equal to the decision level of L^{*}.

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $L^{*} \in \mathcal{V}$ be the decision literal with the highest decision level in \mathcal{V}.
$\triangleright L^{*}$ is unique.
- Let paths* $(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^{*} to 0 in $(\mathcal{V}, \mathcal{E})$.
\triangleright paths $^{*}(\mathcal{V}, \mathcal{E}) \subseteq \operatorname{paths}^{(\mathcal{V}, \mathcal{E})}$.
- $L \in \mathcal{V}$ is a unique implication point (UIP) if it occurs in all paths in paths* $(\mathcal{V}, \mathcal{E})$.
$\triangleright L^{*}$ is always a UIP.
\triangleright The decision level of an UIP is equal to the decision level of L^{*}.
- The UIPs of a reduced conflict graph can be ordered:
\triangleright The 1UIP is the UIP which is closest to 0 .
\triangleright The nUIP is the UIP which is n-closest to 0 .

Unique implication Points - Example

- Consider

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- Let C be the cut clause determined by $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$.

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- Let C be the cut clause determined by $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$.
- C is a UIP clause if
$\triangleright C$ contains a literal L such that \bar{L} is a UIP in $(\mathcal{V}, \mathcal{E})$ and
\triangleright there is no literal in C whose level is identical to the level of L.

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- Let C be the cut clause determined by $\left(\mathcal{V}_{R}, \mathcal{V}_{C}\right)$.
- C is a UIP clause if
$\triangleright C$ contains a literal L such that \bar{L} is a UIP in $(\mathcal{V}, \mathcal{E})$ and
\triangleright there is no literal in C whose level is identical to the level of L.
- C is a nUIP clause if
\triangleright if C is a UIP clause and
\triangleright if $L \in C$ such that \bar{L} is a UIP in $(\mathcal{V}, \mathcal{E})$ then \bar{L} is the nUIP in $(\mathcal{V}, \mathcal{E})$.

UIP Clauses - Examples

- Consider

Yet Another Example

- Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.
- Let $J=(6,4, \overline{2}, 9, \dot{10}, \overline{3}, \dot{8}, \overline{7}, 5, \dot{1})$.

Yet Another Example

\rightarrow Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.

- Let $J=(6,4, \overline{2}, 9, \dot{10}, \overline{3}, \dot{8}, \overline{7}, 5, \dot{1})$.

Yet Another Example

\rightarrow Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.

- Let $J=(6,4, \overline{2}, 9, \dot{10}, \overline{3}, \dot{8}, \overline{7}, 5, \dot{1})$.

Yet Another Example

\rightarrow Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.

- Let $J=(6,4, \overline{2}, 9, \dot{\overline{10}}, \overline{3}, \dot{8}, \overline{7}, 5, \dot{1})$.

Yet Another Example

- Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.
- Let $J=(6,4, \overline{2}, 9, \dot{10}, \overline{3}, \dot{8}, \overline{7}, 5, \dot{1})$.

UIP Clauses - Remarks

- UIP clauses are not unique.
\triangleright In the previous example, [2, 7] and [2,5] are 1UIP clauses.

UIP Clauses - Remarks

- UIP clauses are not unique.
\triangleright In the previous example, [2, 7] and [2, 5] are 1UIP clauses.
- Let
$\triangleright C$ be a UIP clause,
$\triangleright \boldsymbol{m}$ the level of the literal whose complement is UIP, and
$\triangleright \boldsymbol{n}$ the next highest level assigned to some literal in \boldsymbol{C}.
An application of CDBL to $F:: J$ using C removes all literals from J whose level is higher than n.

UIP Clauses - Remarks

- UIP clauses are not unique.
\triangleright In the previous example, [2, 7] and [2, 5] are 1UIP clauses.
- Let
$\triangleright C$ be a UIP clause,
$\triangleright \boldsymbol{m}$ the level of the literal whose complement is UIP, and
$\triangleright \boldsymbol{n}$ the next highest level assigned to some literal in \boldsymbol{C}.
An application of CDBL to $F:: J$ using C removes all literals from J whose level is higher than n.
- Most modern SAT-solvers learn 1UIP clauses.
- If several 1UIP clauses exist, then often the shortest one is prefered.

Conflict Graphs vs Resolution Derivations

- Consider the following linear resolution derivation:

1	$[\overline{1}, 5]$	relevant clause
2	$[\overline{5}, \overline{7}]$	relevant clause
3	$[\overline{8}, \overline{3}]$	relevant clause
4	$[\overline{1}, \overline{5}, 9,10]$	relevant clause
5	$[\overline{2}, 3, \overline{5}, \overline{9}]$	relevant clause
6	$[2,4,7]$	relevant clause
7	$[2,6]$	relevant clause
8	$[\overline{4}, \overline{6}]$	conflict clause
9	$[2, \overline{4}]$	res $(8,7)$
10	$[2,7]$	$\operatorname{res}(9,6)$
11	$[2, \overline{5}]$	$\operatorname{res}(10,2)$
12	$[\overline{1}, 2]$	$\operatorname{res}(12,1)$

- Note [$\overline{1}, 2$] is not a cut-clause! (for the given graph)
- Pipatsriawat, Darwiche: On Modern Clause-Learning Satisfiability Solvers. Journal Automated Reasoning 44, 277-301:2010.
- How can we construct a graph, such that $[1,2]$ is a cut clause?

How to make $[1,2]$ a cut clause

- Let $F=\langle[2,6],[\overline{8}, \overline{3}],[\overline{4}, \overline{6}],[\overline{1}, \overline{5}, 9,10],[2,4,7],[\overline{1}, 5],[\overline{2}, 3, \overline{5}, \overline{9}],[\overline{5}, \overline{7}]\rangle$.
- Let $J=$? .

