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Conflict Analysis – Warm Up

I Given a formiula F , and interpretation J and a clause C, and the current
decision level is n.

. (we always prefer termination and unit propagation over search)

I When is C a conflict clause?

I Which 2 properties do we like to have from learned clauses?

I How many literals in C have at least the decision level n?
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Conflict Analysis – Advanced Implementation

Example of the sophisticated linear resolution
derivation algorithm
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Conflict Analysis – Revisited

I Let F be a formula in CNF, L a literal, and J a partial interpretation.

I C ∈ F is called conflict clause under J iff C|J = [ ].

I A clause C is relevant for L (or is a reason for L) in F ::J
iff C ∈ F and there exist I′ and I such that J = I′, L, I and C|I = [L].

I relevantL(L, F ::J) = {C ∈ F | C is relevant for L in F ::J}.

I A clause C is relevant (or is a reason clause) in F ::J
iff there exists an L such that C is relevant for L in F ::J.

I relevant(F ::J) = {C ∈ F | C is relevant in F ::J}.
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An Old Example Revisited

I Let F = 〈[1, 2], [2, 3], [2, 3, 4], [1, 3], [4]〉

I We may obtain

F :: () ;UNIT F :: (4) (F |(4) = 〈[1, 2], [2, 3], [2, 3], [1, 3]〉)
;DECIDE F :: (4, 1̇) (F |(4,1) = 〈[2, 3], [2, 3], [3]〉)
;UNIT F :: (4, 1̇3) (F |(4,1,3) = 〈[2], [2]〉)
;UNIT F :: (4, 1̇, 3, 2) (F |(4,1,3,2) = 〈[ ]〉)

I We find
relevantL(4, F :: (4, 1̇, 3, 2)) = {[4]}

relevantL(1, F :: (4, 1̇, 3, 2)) = ∅
relevantL(3, F :: (4, 1̇, 3, 2)) = {[1, 3]}
relevantL(2, F :: (4, 1̇, 3, 2)) = {[2, 3]}
relevant(F :: (4, 1̇, 3, 2)) = {[4], [1, 3], [2, 3]}
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Another Example

I Consider F = 〈[1, 3, 4], [2, 3, 4]〉.

I We may obtain

F :: () ;DECIDE F :: (1̇) (F |(1) = 〈[3, 4], [2, 3, 4]〉)
;DECIDE F :: (1̇, 2̇) (F |(1,2) = 〈[3, 4], [3, 4]〉)
;DECIDE F :: (1̇, 2̇, 3̇) (F |(1,2,3) = 〈[4], [4]〉)
;UNIT F :: (1̇, 2̇, 3̇, 4) (F |(1,2,3,4) = 〈〉)
;SAT SAT

I We find
relevantL(4, F :: (1̇, 2̇, 3̇, 4)) = {[1, 3, 4], [2, 3, 4]}
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Multiple Conflict Clauses

I In the sequel

. we will apply UNIT whenever possible,

. we will prefer literals wrt their absolut value,

. we prefer positive over negative literals.

I Consider F = 〈[1, 2], [1, 3], [1, 4], [2, 4], [3, 4]〉.

I We obtain

F :: () ;DECIDE F :: (1̇) (F |(1) = 〈[2], [3], [4], [2, 4], [3, 4]〉)
;UNIT F :: (1̇, 2) (F |(1,2) = 〈[3], [4], [4], [3, 4]〉)
;UNIT F :: (1̇, 2, 3) (F |(1,2,3) = 〈[4], [4], [4]〉)
;UNIT F :: (1̇, 2, 3, 4) (F |(1,2,3,4) = 〈[], []〉)

I There are two conflict clauses, viz. [2, 4] and [3, 4].
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Multiple Conflicts

I Recall We will apply UNIT whenever possible.

I Observation Conflicts can only arise

. after an application of UNIT to some F ::J and

. if F |J contains two unit clauses [A] and [A].

I Consider F = 〈[1, 2, 3], [2, 3]〉.

. We obtain

F :: () ;DECIDE F :: (1̇) (F |(1) = 〈[2, 3], [2, 3]〉)
;DECIDE F :: (1̇, 2̇) (F |(1,2) = 〈[3], [3]〉)

. Two different conflicts are obtained

II by applying unit wrt [3] or [3]

II yielding the conflict clauses [2, 3] or [1, 2, 3], respectively.

I We assume that one particular conflict is selected.

I As we will see later, this selection is not very important.
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Implication Graphs
I In the sequel we assume that |relevantL(L, F ::J)| ≤ 1 for all L.

. If |relevantL(L, F ::J)| > 1 for some L, then

II all relevant clauses wrt L except one are deleted and

II we write relevantL(L, F ::J) = C instead of relevantL(L, F ::J) = {C}.

. Different selections lead to different implication graphs.

I Let F be a formula in CNF and J a partial interpretation.

I The explanation of L′ is the set {L | L ∈ relevantL(L′, F ::J) \ {L′}}

I An implication graph for F ::J is a graph (V, E), where

. V = J,

. E = {(L, L′) ∈ V × V | there exists C = relevantL(L′, F ::J) and L ∈
(C \ {L′}},

. each (L, L′) ∈ E is directed from L to L′.

I It is sometimes convenient

. to label a vertex by its decision level in J (depicted as subscript)

. to label an edge by the clause who caused it (the reason).

Steffen Hölldobler and Norbert Manthey
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Implication Graphs for an Old Example

I Let F = 〈[1, 2], [2, 3], [2, 3, 4], [1, 3], [4]〉

. Consider J1 = (4, 1̇, 3)

II relevant(L, F ::J1) = {[4], [1, 3]}

1̇1

40

31
[1, 3]

. Consider J2 = (4, 1̇, 3, 2)

II relevant(L, F ::J2) = {[4], [1, 3], [3, 2]}

1̇1

40

31 21
[1, 3] [3, 2]
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Implication Graphs – Another Example

I Let F = 〈[1, 8], [2, 4, 5], [3, 9], [2, 7, 9], [4, 7], [6, 7]〉

I Let J = (5, 6, 4, 7, 9, 3̇, 2̇, 8, 1̇).

1̇1 81

2̇2

3̇3 93 73

63

43

53

[1, 8]

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]
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Conflict Graphs

I Consider F ::J and let (V, E) be the implication graph for F ::J.

I Let C ∈ F and suppose C|J = [ ].

I (V′, E′) is the conflict graph for F ::J and C if

. V′ = V ∪ {0} and

. E′ = E ∪ {(L, 0) | L ∈ V and L ∈ C}.

I 0 is called conflict node.

I Conflict graphs are acyclic.
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The Conflict Graph of an Old Example

I Let F = 〈[1, 2], [2, 3], [2, 3, 4], [1, 3], [4]〉.

I Consider J = (2, 3, 1̇, 4).

I Note [2, 3, 4]|J = [ ].

1̇1

40

31 21

0

[1, 3]

[2, 3, 4]

[2, 3, 4]

[2, 3]

[2, 3, 4]
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Conflict Graphs – Another Example (1)

I Let F = 〈[1, 8], [2, 4, 5], [3, 9], [2, 7, 9], [4, 7], [6, 7], [4, 5, 6], [5, 6, 9]〉.

I Let J = (5, 6, 4, 7, 9, 3̇, 2̇, 8, 1̇).

I Note [4, 5, 6]|J = [ ].

1̇1 81

2̇2

3̇3 93 73

63

43

53

0

[1, 8]

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[4, 5, 6]

[4, 5, 6]

[4, 5, 6]
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Conflict Graphs – Another Example (2)

I Let F = 〈[1, 8], [2, 4, 5], [3, 9], [2, 7, 9], [4, 7], [6, 7], [4, 5, 6], [5, 6, 9]〉.

I Let J = (5, 6, 4, 7, 9, 3̇, 2̇, 8, 1̇).

I Note There is another conflict clause [5, 6, 9]|J = [ ].

1̇1 81

2̇2

3̇3 93 73

63

43

53

0

[1, 8]

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]
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Reduced Conflict Graph

I Let (V, E) be a conflict graph.

I The reduced conflict graph of (V, E) is the subgraph of (V, E) containing all
vertices which are connected to 0 and all edges between these vertces.

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[4, 5, 6]

[4, 5, 6]

[4, 5, 6]

I In the sequel, we consider only reduced conflict graphs.

Steffen Hölldobler and Norbert Manthey
SAT Solving – Conflict Analysis 33



Paths

I Let (V, E) be a reduced conflict graph.

I Let VS = {L ∈ V | L is a decision literal or its decision level is 0}.

I Let paths(V, E) be the set of all directed paths from nodes in VS to 0 in (V, E).

I Consider

1̇1

40

31 21

0

[1, 3]

[4, 3, 2]

[4, 3, 2]

[3, 2]

[4, 3, 2]

. VS = {1, 4}.

. paths(V, E) = {(1, 3, 2, 0), (1, 3, 0), (4, 0)}.
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Paths – Another Example

I Consider

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[4, 5, 6]

[4, 5, 6]

[4, 5, 6]

. VS = {2, 3}

. paths(V, E) = { (2, 5, 0), (2, 7, 4, 5, 0), (2, 7, 4, 0), (2, 7, 6, 0),
(3, 9, 7, 4, 5, 0), (3, 9, 7, 4, 0), (3, 9, 7, 6, 0)}
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Cuts

I Let (V, E) be a reduced conflict graph.

I A cut (VR ,VC) through (V, E) is a partition of V into VR and VC such that

. VR ∩ VC = ∅,

. VR ∪ VC = V ,

. VS ⊆ VR ,

. {0} ⊆ VC , and

. each p ∈ paths(V, E) is partitioned into two subpaths pR and pC such that

II pR and pC have no vertex in common,

II p is obtained by adding an edge from the end of pR to the start of pC ,

II VR contains all vertices occurring in pR , and

II VC contains all vertices occurring in pC .
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Cuts – Example

I Consider

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]

VR = ({2, 3, 7, 9},VC = {4, 5, 6, 0})
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Cut Clauses

I Let (VR ,VC) be a cut through a reduced conflict graph (V, E).

I Let (VR , ER) be the subgraph of (V, E)
which consists only of the vertices VR and edges between elements of VR .

I Let V′R be the subset of VR containing all vertices,
where an outgoing edge was cut by (VR ,VC).

I The cut clause CR determined by (VR ,VC) is the clause V′R .
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Cut Clauses – Example

I Consider

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]

CR = [2, 7, 9]
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Initial Cuts
I Let (V, E) be a reduced conflict graph.

I Let (VR ,VC) be a cut through (V, E).

I (VR ,VC) is an initial cut if VC = {0}.

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]

CR = [5, 6, 9]
I Note The cut clause is the conflict clause.

Steffen Hölldobler and Norbert Manthey
SAT Solving – Conflict Analysis 40



Shifted Cuts

I Let (V, E) be a reduced conflict graph.

I Recall VS = {L ∈ V | L is a decision literal or its decision level is 0}.

I Let (VR ,VC) be a cut through (V, E).

I Let (VR , ER) be the subgraph of (V, E)
which consists only of the vertices VR and edges between elements of VR .

I Let L ∈ VR \ VS such that the outdegree of L in (VR , ER) is 0.

I (VR \ {L},VC ∪ {L}) is the cut obtained from (VR ,VC) by shifting L.
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Shifted Cuts – Examples

2̇2

3̇3 93 73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]

[5, 6, 9]

[2, 4, 6, 9]

[2, 4, 7, 9]

[2, 7, 9]

[2, 9][2, 3]
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Shifted Cuts – Examples
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Shifted Cuts – Examples
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Corresponding Linear Resolution Derivation

I We obtain
1 [3, 9] relevant clause
2 [2, 7, 9] relevant clause
3 [4, 7] relevant clause
4 [6, 7] relevant clause
5 [2, 4, 5] relevant clause
6 [5, 6, 9] conflict clause
7 [2, 4, 6, 9] res(6,5)
8 [2, 4, 7, 9] res(7,4)
9 [2, 7, 9] res(8,3)

10 [2, 9] res(9,2)
11 [2, 3] res(10,1)

I Observation Cut-clauses corresponding to a cut, which was generated by a
sequence of shifts from the initial cut, can also be generated by linear
resolution derivations from the conflict clause using relevant clauses.
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Unique Implication Points

I Let (V, E) be a (reduced) conflict graph.

I Let L∗ ∈ V be the decision literal with the highest decision level in V .

. L∗ is unique.

I Let paths∗(V, E) be the set of all directed paths from L∗ to 0 in (V, E).

. paths∗(V, E) ⊆ paths(V, E).

I L ∈ V is a unique implication point (UIP)
if it occurs in all paths in paths∗(V, E).

. L∗ is always a UIP.

. The decision level of an UIP is equal to the decision level of L∗.

I The UIPs of a reduced conflict graph can be ordered:

. The 1UIP is the UIP which is closest to 0.

. The nUIP is the UIP which is n-closest to 0.
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Unique implication Points – Example

I Consider

2̇2

3̇3

2UIP

93

1UIP

73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]
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UIP Clauses

I Let (V, E) be a (reduced) conflict graph.

I Let (VR ,VC) be a cut through (V, E).

I Let C be the cut clause determined by (VR ,VC).

I C is a UIP clause if

. C contains a literal L such that L is a UIP in (V, E) and

. there is no literal in C whose level is identical to the level of L.

I C is a nUIP clause if

. if C is a UIP clause and

. if L ∈ C such that L is a UIP in (V, E) then L is the nUIP in (V, E).
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UIP Clauses – Examples

I Consider

2̇2

3̇3

2UIP

93

1UIP

73

63

43

53

0

[3, 9]

[2, 7, 9]

[2, 7, 9] [4, 7]

[6, 7]

[2, 4, 5]

[2, 4, 5]

[5, 6, 9]

[5, 6, 9]
[5, 6, 9]

[5, 6, 9][2, 4, 6, 9]

[2, 4, 7, 9]

[2, 7, 9]

[2, 9][2, 3]
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Yet Another Example

I Let F = 〈[2, 6], [8, 3], [4, 6], [1, 5, 9, 10], [2, 4, 7], [1, 5], [2, 3, 5, 9], [5, 7]〉.

I Let J = (6, 4, 2, 9, 1̇0, 3, 8̇, 7, 5, 1̇).

1̇1 51 71

8̇2 32

1̇03

3UIP

93

2UIP

23

1UIP

43

63

0

[1, 5] [5, 7]
[2, 4, 7]

[4, 6]

[1, 5, 9, 10]
[1, 5, 9, 10]

[2, 3, 5, 9]

[2, 4, 7]

[2, 6] [4, 6]

[1, 5, 9, 10] [2, 3, 5, 9]

[8, 3]
[2, 3, 5, 9]

[2, 7]

[3, 5, 7, 9]

[3, 5, 7, 10]
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UIP Clauses – Remarks

I UIP clauses are not unique.

. In the previous example, [2, 7] and [2, 5] are 1UIP clauses.

I Let

. C be a UIP clause,

. m the level of the literal whose complement is UIP, and

. n the next highest level assigned to some literal in C.

An application of CDBL to F ::J using C removes all literals from J whose level
is higher than n.

I Most modern SAT-solvers learn 1UIP clauses.

I If several 1UIP clauses exist, then often the shortest one is prefered.
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Conflict Graphs vs Resolution Derivations
I Consider the following linear resolution derivation:

1 [1, 5] relevant clause
2 [5, 7] relevant clause
3 [8, 3] relevant clause
4 [1, 5, 9, 10] relevant clause
5 [2, 3, 5, 9] relevant clause
6 [2, 4, 7] relevant clause
7 [2, 6] relevant clause
8 [4, 6] conflict clause
9 [2, 4] res(8,7)

10 [2, 7] res(9,6)
11 [2, 5] res(10,2)
12 [1, 2] res(12,1)

I Note [1, 2] is not a cut-clause! (for the given graph)

I Pipatsriawat, Darwiche: On Modern Clause-Learning Satisfiability Solvers.
Journal Automated Reasoning 44, 277-301:2010.

I How can we construct a graph, such that [1, 2] is a cut clause?
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How to make [1, 2] a cut clause

I Let F = 〈[2, 6], [8, 3], [4, 6], [1, 5, 9, 10], [2, 4, 7], [1, 5], [2, 3, 5, 9], [5, 7]〉.

I Let J =?.

1̇1 51 71

8̇2 32
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[2, 3, 5, 9]

[2, 4, 7]

[2, 6] [4, 6]

[1, 5, 9, 10] [2, 3, 5, 9]

[8, 3]
[2, 3, 5, 9]

[2, 7]

[3, 5, 7, 9]

[3, 5, 7, 10]
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