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Conflict Analysis — Warm Up

» Given a formiula F, and interpretation J and a clause C, and the current
decision level is n.

> (we always prefer termination and unit propagation over search)
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» Given a formiula F, and interpretation J and a clause C, and the current
decision level is n.

> (we always prefer termination and unit propagation over search)

» When is C a conflict clause?
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Conflict Analysis — Warm Up

» Given a formiula F, and interpretation J and a clause C, and the current
decision level is n.

> (we always prefer termination and unit propagation over search)

» When is C a conflict clause?

» Which 2 properties do we like to have from learned clauses?
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Conflict Analysis — Warm Up

» Given a formiula F, and interpretation J and a clause C, and the current
decision level is n.

> (we always prefer termination and unit propagation over search)

» When is C a conflict clause?

» Which 2 properties do we like to have from learned clauses?

» How many literals in C have at least the decision level n?
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Conflict Analysis — Advanced Implementation

Example of the sophisticated linear resolution
derivation algorithm
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Conflict Analysis — Revisited

» Let F be a formula in CNF, L a literal, and J a partial interpretation.

» C € Fiscalled conflict clause under J iff C|, = [].
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Conflict Analysis — Revisited

» Let F be a formula in CNF, L a literal, and J a partial interpretation.
» C € Fiscalled conflict clause under J iff C|, = [].

» A clause Cis relevant for L (or is a reason for L) in F::J
iff C € F and there exist I’ and I suchthat J = I’, L,/ and C|; = [L].

» relevantL(L, F::J) = {C € F | Cisrelevantfor Lin F::J}.
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Conflict Analysis — Revisited

» Let F be a formula in CNF, L a literal, and J a partial interpretation.
» C € Fiscalled conflict clause under J iff C|, = [].

» A clause Cis relevant for L (or is a reason for L) in F::J
iff C € F and there exist I’ and I suchthat J = I’, L,/ and C|; = [L].

» relevantL(L, F::J) = {C € F | Cisrelevantfor Lin F::J}.

» A clause Cis relevant (or is a reason clause) in F:: J
iff there exists an L such that C is relevant for L in F::J.

» relevant(F::J) = {C € F | Cisrelevantin F::J}.
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~unr F::(Z). (Fl(ﬁ) =([1,2],[2,3],[2,3],[1,3]))
"~ DECIDE F::(é’ 1) (F‘(HJ) = <[2=§]7 [Ev §]= [§]>)
o Fu(3,13) (Fligz = {[2], [21))
~~UNIT F:(4,1,3,2) (F‘(Z,1,3,2) ={[1)
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~unr F::(Z). (F|(E) =([1,2],[2,3],[2,3],[1,3]))
"~ DECIDE F::(é’ 1) (F‘(HJ) = <[2=§]7 [Ev §]= [§]>)
~ur Fi(3,13) (Fla.as = (21, 2])
~~UNIT F:(4,1,3,2) (F‘(Z,1,3,2) ={[1)
» We find
relevantL(4, F::(4,1,3,2)) = {[4]}
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~unr F::(E) ) (F|(5) ={([1,2], [2,§],J§, ?],JT, 3D)
" DECIDE F::(i’ 1) (F‘(HJ) = <[2 3]7 [27 3]5 [§]>)
~*UNIT Fi:(ﬂ,'!3) (F‘(Z,LS) = <[2]a [2]>)
7 UNIT F=1(4,1,3, 2) (F‘(Z,1,3,2) - <[]>)
» We find

relevantL(4, F:: (4,1, 3,2))
relevantL(1, F:: (4,1, 3, 2))

{141}
(]
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~wwr  Fz(d) (Fl@ = (1,21, [2,3],[2,3], [1,3]))
~pecoe F i (é’ 1) (F‘(HJ) = ([2, §]7 [Ev §]’ [§]>)
~unr F::(4,13) (Fl@,a,3 = (2],12])
~uwr  F::(4,1,3,2) (Fl@,1,3,2) = (D)
» We find _ . _

relevantL(4, F::(4,1,3,2)) = {[4]}

relevantL(1, F::(4,1,3,2)) = 0

relevantL(3, F:: (4,1,3,2)) = {[1,3]}
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~uwr  Fz(3) (Fla = (1,21,12,3], 2, 3], [1,3]))
~pecoe F i (é’ 1) (F‘(HJ) = ([2, §]7 [Ev §]’ [§]>)
~unr F::(4,13) (Fl@,a,3 = (2],12])
~uwr  F::(4,1,3,2) (Fl@,1,3,2) = (D)
» We find B . B

relevantL(4, F::(4,1,3,2)) = {[4]}

relevantL(1, F::(4,1,3,2)) = 0

relevantL(3, F:: (4,1,3,2)) = {[1,3]}

relevantL(2, F:: (4,1,3,2)) = {[2,3]}
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An Old Example Revisited

> Let F = ([1,2],[2,3],[2,3,4],[1,3], [4])

» We may obtain

F:() ~uwr F::(4). (F|(5) =(1,2],[2,3],[2,3],[1,3]))
~pecioe F::(4, 1) (F‘(HJ) = ([2,3],[2,3], [3]))
~*UNIT F::(4, 13) (F‘(Z,1,3) = <[2]a [2]>)
~*UNIT F:(4,1,3,2) (F‘(Z,1,3,2) =«

» We find _ _
relevantL(4, F:: (4,1,3,2)) = {[4]}
relevantL(1, F:: (4,1,3,2)) = 0
relevantL(3, F:: (4,1,3,2)) = {[1,3]}
relevantL(2, F::(4,1,3,2)) = {[2,3]}
relevant(F:: (4,1, 3, 2)) = {[4],[1,3],[2,3]}
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Another Example

» Consider F = ([1,3,4],[2, 3, 4]).

» We may obtain

F:() ~opecoe  F::(1) (Flay = ([3,4],[2,3,4]))
"’ DECIDE Fi:(!,?) i (F|(1.2) =([3,4], [3,4]))
> DECIDE F::(!vg,:_;) (F|(1,2,3) = <[4]» [4]>)
~>UNIT F::(1,2a 3, 4) (F\(1,2,3,4) = ())
~> SAT SAT
» We find
relevantL(4, F::(1,2,3,4)) = {[1,3,4],[2,3,4]}
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Multiple Conflict Clauses

» In the sequel

> we will apply UNIT whenever possible,
> we will prefer literals wrt their absolut value,
> we prefer positive over negative literals.

» Consider F = ([1, 2], [1,3],[1, 4], [2, 4], [3, 4])-

» We obtain
F::() ~oecoe Fi:(1) (Flay = ([21, [3], [4], [2, 4], [3, 4]))
~unr F:(1,2) (Fl1,2) = ([31,[4], [4], [3, 4]))
~uwir  F:(1,2,3) (Fl(1,2,3 = ([4],[4],[4]))
~uwr  F:(1,2,3,4) (Fl(1,2,3,8) = ([, [))

» There are two conflict clauses, viz. [2, 4] and [3, 4].
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Multiple Conflicts
» Recall We will apply UNIT whenever possible.

» Observation Conflicts can only arise

> after an application of UNIT to some F::J and
> if F|, contains two unit clauses [A] and [A].
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Multiple Conflicts

» Recall We will apply UNIT whenever possible.

» Observation Conflicts can only arise
> after an application of UNIT to some F::J and
> if F|y contains two unit clauses [A] and [A].

» Consider F = ([1, 2, 3], [2, 3]).
> We obtain

F::() > DECIDE Fi:(1:) i (F|(1) = ([E» 3]»[§»§]>)
"~ DECIDE F11(1,2) (F|(1,2) = ([3], [3]))
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Multiple Conflicts

» Recall We will apply UNIT whenever possible.

» Observation Conflicts can only arise
> after an application of UNIT to some F::J and
> if F|y contains two unit clauses [A] and [A].
» Consider F = ([1, 2, 3], [2, 3]).
> We obtain
Fi:() ~oecoe Fiu(1)  (Flay = ([2,3],12,3]))
"~ DECIDE F11(1,2) (F|(1,2) = ([3], [3]))
> Two different conflicts are obtained

» by applying unit wrt [3] or [3]
» yielding the conflict clauses [2, 3] or [1, 2, 3], respectively.
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Multiple Conflicts

» Recall We will apply UNIT whenever possible.

» Observation Conflicts can only arise
> after an application of UNIT to some F::J and
> if F|, contains two unit clauses [A] and [A].
» Consider F = ([1, 2, 3], [2, 3]).
> We obtain
F:() ~opeome Fu(l)  (Flay = ([2,3],[2,3]))
"~ DECIDE F11(1,2) (F|(1,2) = ([3], [3]))
> Two different conflicts are obtained
» by applying unit wrt [3] or [3]
» yielding the conflict clauses [2, 3] or [1, 2, 3], respectively.

» We assume that one particular conflict is selected.
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Multiple Conflicts

» Recall We will apply UNIT whenever possible.

» Observation Conflicts can only arise

> after an application of UNIT to some F::J and
> if F|, contains two unit clauses [A] and [A].

» Consider F = ([1, 2, 3], [2, 3]).
> We obtain
F::() ~pecioe F==(1:)_ (Flay = (12,31, [2,3]))
"~ DECIDE F11(1,2) (F|(1.2) = ([3], [3]))
> Two different conflicts are obtained

» by applying unit wrt [3] or [3]
» yielding the conflict clauses [2, 3] or [1, 2, 3], respectively.

» We assume that one particular conflict is selected.

» As we will see later, this selection is not very important.
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Implication Graphs
» In the sequel we assume that |relevantL(L, F::J)| < 1 for all L.
> If |relevantL(L, F::J)| > 1 for some L, then
» all relevant clauses wrt L except one are deleted and
» we write relevantL(L, F::J) = C instead of relevantL(L, F::J) = {C}.

> Different selections lead to different implication graphs.
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Implication Graphs
» In the sequel we assume that |relevantL(L, F::J)| < 1 for all L.
> If |relevantL(L, F::J)| > 1 for some L, then
» all relevant clauses wrt L except one are deleted and
» we write relevantL(L, F::J) = C instead of relevantL(L, F::J) = {C}.
> Different selections lead to different implication graphs.
» Let F be a formula in CNF and J a partial interpretation.
» The explanation of L’ is the set {L | L € relevantL(L’, F::J) \ {L'}}
» An implication graph for F::J is a graph (V, £), where

>V =J,
> &= {(L,L') € V x V | there exists C = relevantL(L’, F::J)and L €
(C\{L'}},

> each (L, L’) € € is directed from Lto L’.
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Implication Graphs
» In the sequel we assume that |relevantL(L, F::J)| < 1 for all L.

> If |relevantL(L, F::J)| > 1 for some L, then
» all relevant clauses wrt L except one are deleted and
» we write relevantL(L, F::J) = C instead of relevantL(L, F::J) = {C}.
> Different selections lead to different implication graphs.
» Let F be a formula in CNF and J a partial interpretation.
» The explanation of L’ is the set {L | L € relevantL(L’, F::J) \ {L'}}
» An implication graph for F::J is a graph (V, £), where

>V =J,
> &= {(L,L') € V x V | there exists C = relevantL(L’, F::J)and L €
(C\{L'}},

> each (L, L’) € € is directed from Lto L’.

» It is sometimes convenient
> to label a vertex by its decision level in J (depicted as subscript)
> to label an edge by the clause who caused it (the reason).
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Implication Graphs for an Old Example

» Let F = ([1,2],[2,3],[2,3,4],[1,3],[4])
> Consider J; = (4,1,3)
» relevant(L, F::Jy) = {[4],[1, 3]}

() [1,3] @
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Implication Graphs for an Old Example
> Let F = <[1’ 2]’ [2’§]’ [Ea §1 4]7 [Tv 3]7 [ED
> Consider J; = (4,1,3)
» relevant(L, F:: Jy) = {[4], [T, 3]}

() [1,3] @
> Consider J, = (4,1,3,2)
» relevant(L, F::d) = {[4],[1,3],[3,2]}
. 1,3 3,2
O OO,
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Implication Graphs — Another Example

» Let F = ([1,8], 2,3,

5],[3,9],12,7,9],[4,71,[6,7])
> LetJ = (5,6,4,7,9,3,2,8,1).
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Conflict Graphs

» Consider F::J and let (V, £) be the implication graph for F:: J.
» Let C € F and suppose C|, = [].

(V’, &) is the conflict graph for F::J and C if

> V' = v u {0} and

> & =EU{(L,0)|LeVvandL € C}.

v

» 0is called conflict node.

» Conflict graphs are acyclic.
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The Conflict Graph of an Old Example

» Let F = ([1,2], [2,§], [f, 3, 4], [T, 3], [Z])
» Consider J = (2,3,1,4).
» Note [2,3,4]y =[]
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Conflict Graphs — Another Example (1)

> Let F = <[T7 8]7 [2’ 47 5]3 [55 §]’ [Eﬂ ?7 9]7 [4? 7]? [67 7]7 [a7 5? 6]9 [5'/ 67 9])'
> LetJ = (5,6,4,7,9,3,2,8,1).
» Note [4,5,6]y =[]

<> [,8] [2,4,5]

. [4,5,6] @
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Conflict Graphs — Another Example (2)

» Let F = ([1,8],[2,4,5],[3,9], 2,7, 9], 4, 7],[6, 7], [4, 5, 6], [5, 6, 9]).
» LetJ = (5,6,4,7,9,3,2,8,1).

» Note There is another conflict clause [5,6,9]|, = [].

() [, 8] [2,4,5]

[5,6,9]

. [59 67 9]
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Reduced Conflict Graph

» Let (V, £) be a conflict graph.

» The reduced conflict graph of (V, £) is the subgraph of (V, £) containing all
vertices which are connected to 0 and all edges between these vertces.

[27 Z! ]

[17576]
OarrO)

» In the sequel, we consider only reduced conflict graphs.
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Paths

» Let (V, €) be a reduced conflict graph.
» Let Vs = {L € V| Lis adecision literal or its decision level is 0}.

» Let paths(V, £) be the set of all directed paths from nodes in Vg to 0in (V, &).

» Consider
. [1,3] 3,2]
OO G
49
> Vg = {1,1}.

> paths(V, €) = {(1,3,2,0), (1,3,0), (Za 0)}.
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Paths — Another Example

» Consider

[z’ 57 6]

73

6.7] @,5,6]
. [,5,6]

5, )(27450)(2740)( 7,6,0),
574 2,

> Vs = {2,3}
> paths(V, ) = { (2,
@3,

7,4,5,0),(3,9,7,4,0),(3,9,7,6,0)}
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Cuts

» Let (V, £) be a reduced conflict graph.
» A cut (Vg, V¢) through (V, £) is a partition of V into Vg and V¢ such that
> VRN Ve =0,
> VpUVc =V,
> Vs C Vg,
> {0} C V¢, and
> each p € paths(V, £) is partitioned into two subpaths pg and p¢c such that
» pg and pc have no vertex in common,
» p is obtained by adding an edge from the end of pg to the start of pc,
» Vg contains all vertices occurring in pg, and
» V¢ contains all vertices occurring in pc.
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Cuts — Example

» Consider

Vg = ({27 3, 77 5}7 Ve = {4739 67 0})
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Cut Clauses

» Let (Vg, Vc) be a cut through a reduced conflict graph (V, £).

» Let (Vg, £g) be the subgraph of (V, &)
which consists only of the vertices Vg and edges between elements of Vg.

» Let V/, be the subset of Vg containing all vertices,
where an outgoing edge was cut by (Vg, V¢).

» The cut clause Cg determined by (Vg, V¢) is the clause V.
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Cut Clauses — Example

» Consider

Cr=1[2,7,9]
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Initial Cuts

» Let (V, €) be a reduced conflict graph.
» Let (Vg, V) be a cut through (V, £).
» (Vg, V¢) is aninitial cut if Vo = {0}.

Cr =[5,6,9]
» Note The cut clause is the conflict clause.
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Shifted Cuts

» Let (V, £) be a reduced conflict graph.

» Recall Vg = {L € V | Lis adecision literal or its decision level is 0}.

v

Let (Vg, V¢) be a cut through (V, £).

v

Let (Vg, Eg) be the subgraph of (V, &)
which consists only of the vertices Vi and edges between elements of Vg.

v

Let L € Vg \ Vs such that the outdegree of L in (Vg, Eg) is 0.

v

(Ve \ {L}, V¢ U {L}) is the cut obtained from (Vg, V¢) by shifting L.
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Shifted Cuts — Examples
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Shifted Cuts — Examples

[57 Z’ 77 9]
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Shifted Cuts — Examples

[57 Z’ 77 9]
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Shifted Cuts — Examples
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Shifted Cuts — Examples
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Corresponding Linear Resolution Derivation

» We obtain L
1 [8,9] relevant clause
2 [2,7,9] relevant clause
3 [4,7] relevant clause
4 [6,7] relevant clause
5 [2,4,5] relevant clause
6 [5,6,9] conflict clause
7 [2,4,6,9] res(6,5)
8 [2,4,7,9] res(7,4)
9 [2,7,9] res(8,3)
10 [2,9] res(9,2)
11 [2,3] res(10,1)
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Corresponding Linear Resolution Derivation

» We obtain L
1 [8,9] relevant clause
2 [2,7,9] relevant clause
3 [4,7] relevant clause
4 [6,7] relevant clause
5 [2,4,5] relevant clause
6 [5,6,9] conflict clause
7 [2,4,6,9] res(6,5)
8 [2,4,7,9] res(7,4)
9 [2,7,9] res(8,3)
10 [2,9] res(9,2)
11 [2,3] res(10,1)

» Observation Cut-clauses corresponding to a cut, which was generated by a
sequence of shifts from the initial cut, can also be generated by linear
resolution derivations from the conflict clause using relevant clauses.
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Unique Implication Points

» Let (V, £) be a (reduced) conflict graph.

» Let L* € V be the decision literal with the highest decision level in V.
> L* is unique.

» Let paths™(V, £) be the set of all directed paths from L* to 0 in (V, £).
> paths*(V, E) C paths(V, £).
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Unique Implication Points

» Let (V, £) be a (reduced) conflict graph.

» Let L* € V be the decision literal with the highest decision level in V.
> L* is unique.

» Let paths™(V, £) be the set of all directed paths from L* to 0 in (V, £).
> paths*(V, E) C paths(V, £).

» L € Vis aunique implication point (UIP)
if it occurs in all paths in paths™*(V, £).
> L* is always a UIP.
> The decision level of an UIP is equal to the decision level of L*.
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Unique Implication Points

» Let (V, £) be a (reduced) conflict graph.

» Let L* € V be the decision literal with the highest decision level in V.
> L* is unique.

» Let paths™(V, £) be the set of all directed paths from L* to 0 in (V, £).
> paths*(V, E) C paths(V, £).

» L € Vis aunique implication point (UIP)
if it occurs in all paths in paths™*(V, £).

> L* is always a UIP.
> The decision level of an UIP is equal to the decision level of L*.
» The UIPs of a reduced conflict graph can be ordered:

> The 1UIP is the UIP which is closest to 0.
> The nUIP is the UIP which is n-closest to 0.
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Unique implication Points — Example

» Consider

[5,6,9]

. [57 6’ 9]
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UIP Clauses

» Let (V, €) be a (reduced) conflict graph.
» Let (Vg, V¢) be a cut through (V, £).
» Let C be the cut clause determined by (Vg, V¢).
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UIP Clauses

» Let (V, €) be a (reduced) conflict graph.

» Let (Vg, V¢) be a cut through (V, £).

» Let C be the cut clause determined by (Vg, V¢).
» Cis aUIP clause if

> C contains a literal L such that L is a UIP in (V, £) and
> there is no literal in C whose level is identical to the level of L.
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UIP Clauses

» Let (V, €) be a (reduced) conflict graph.
» Let (Vg, V¢) be a cut through (V, £).
» Let C be the cut clause determined by (Vg, V¢).
» Cis aUIP clause if
> C contains a literal L such that L is a UIP in (V, £) and
> there is no literal in C whose level is identical to the level of L.
» CisanUIP clause if

> if Cis a UIP clause and
> if L € C such that Lis a UIP in (V, £) then L is the nUIP in (V, £).
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UIP Clauses — Examples

» Consider B -
[2,7,9] [2,4,6,9] [5,6,9]

e @ Il'
,’[ ,6,9]
!

1
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Yet Another Example

» Let F = ([2,6],[8,3],[4,6],[,5,9,10], [2,4, 7], [1, 5], [2,3,5,9], [, 7]).

> LetJ = (6,4,2,9,10,3,8,7,5,1).

@[1, 5,9, w]@ 2.3,5,9]

3uUIP 2uip
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Yet Another Example

» Let F = ([2,6],[8, 3], [3,6],[,5,9, 10], [2,4,7], [, 5], [2, 3,5, 9], [5, 7])-

> LetJ = (6,4,2,9,10,3,8,7,5,1).

[1,5,9,10]

[1,5,9,10]

@[1, 5,9, w]@ 2.3,5,9]

3uUIP 2uip

o 1 \
[8,3] I \
I \
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Yet Another Example

» Let F = ([2,6],[8, 3], [3,6],[,5,9, 10], [2,4,7], [, 5], [2, 3,5, 9], [5, 7])-

> LetJ = (6,4,2,9,10,3,8,7,5,1).

[1,5,9,10]

[1,5,9,10]

@[1, 5,9, w]@ 2.3,5,9]

3uUIP 2uip

[8,3] / | \
/ I \
/
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Yet Another Example

> Let F = (12,6],[8,3], [4,6], 1,5,9,10], [2,4,7], 1,5], [2,3,5,3], [5, 7]).

» LetJ = (6,4,2,9,10,3,8,7,5, 1). -
[3’ 5’ 77 9]
[5,7] . ’ - ’ ’
54 71 an’ -7 0,
- - s //

[1,5,9,10]

-
’ /
4 4
4
28 4
7 @8

[1,5,9,10]

, f2.4,7 )

[1,5,9,10] [5,3,5,5,1 // ‘l

1 / 1

I |

3UIP 2UIP 3,8
\

()"
\
\

1
1
I
1
)
1
I
1
[
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Yet Another Example

> Let F = ([2,6],[8,3],[4,6],[1,5,9,10], [2,4,7],[1,5],[2,3,5,9], [5, 7]).

> LetJ = (6,4,2,9,10,3,8,7,5,1).

5 /e B

1

[1,5,9,10] [i,5,9, 19 >
//

// ,

5,998 25,55

! I

\
3uIpP \2uIP
AY

1
1
I
1
)
1
I
1
[

@ 3]
/

[3,5,7,10]  [2,7]
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UIP Clauses — Remarks

» UIP clauses are not unique.

> In the previous example, [2, 7] and [2, 5] are 1UIP clauses.
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UIP Clauses — Remarks

» UIP clauses are not unique.

> In the previous example, [2, 7] and [2, 5] are 1UIP clauses.
> Let

> C be a UIP clause,
> m the level of the literal whose complement is UIP, and
> n the next highest level assigned to some literal in C.

An application of CDBL to F:: J using C removes all literals from J whose level
is higher than n.
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UIP Clauses — Remarks

» UIP clauses are not unique.
> In the previous example, [2, 7] and [2, 5] are 1UIP clauses.
> Let

> C be a UIP clause,
> m the level of the literal whose complement is UIP, and
> n the next highest level assigned to some literal in C.

An application of CDBL to F:: J using C removes all literals from J whose level
is higher than n.

» Most modern SAT-solvers learn 1UIP clauses.

» If several 1UIP clauses exist, then often the shortest one is prefered.
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Conflict Graphs vs Resolution Derivations
» Consider the following linear resolution derivation:

1 [1,5] relevant clause
2 [5,7] relevant clause
3 [8,3] relevant clause
4 [1,5,9,10] relevant clause
5 [2,3,5,9] relevant clause
6 [2,4,7] relevant clause
7 [2,6] relevant clause
8 [4,6] conflict clause
9 [2,4] res(8,7)
10 [2,7] res(9,6)
11 [2,5] res(10,2)
12 [1,2] res(12,1)

» Note [1, 2] is not a cut-clause! (for the given graph)

» Pipatsriawat, Darwiche: On Modern Clause-Learning Satisfiability Solvers.
Journal Automated Reasoning 44, 277-301:2010.

» How can we construct a graph, such that [1, 2] is a cut clause?
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How to make [1, 2] a cut clause

» Let F = ([2,6],[8,3],[4,6],[1,5,9,10], [2,4,7],[1,5], [2,3,5,9], [5, 7])
> LetdJ =7.

[3,5,7,101 [2,7]
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