

SAT Solving – Conflict Analysis

Steffen Hölldobler and Norbert Manthey International Center for Computational Logic Technische Universität Dresden Germany

Conflict Analysis

Implication Graphs

Unique Implication Points

INTERNATIONAL CENTER

- ▶ Given a formiula *F*, and interpretation *J* and a clause *C*, and the current decision level is *n*.
 - (we always prefer termination and unit propagation over search)

- ▶ Given a formiula *F*, and interpretation *J* and a clause *C*, and the current decision level is *n*.
 - (we always prefer termination and unit propagation over search)
- When is C a conflict clause?

- ▶ Given a formiula *F*, and interpretation *J* and a clause *C*, and the current decision level is *n*.
 - (we always prefer termination and unit propagation over search)
- When is C a conflict clause?
- Which 2 properties do we like to have from learned clauses?

- ▶ Given a formiula *F*, and interpretation *J* and a clause *C*, and the current decision level is *n*.
 - (we always prefer termination and unit propagation over search)
- When is C a conflict clause?
- Which 2 properties do we like to have from learned clauses?
- How many literals in C have at least the decision level n?

Conflict Analysis – Advanced Implementation

Example of the sophisticated linear resolution derivation algorithm

Conflict Analysis – Revisited

- ▶ Let *F* be a formula in CNF, *L* a literal, and *J* a partial interpretation.
- $C \in F$ is called conflict clause under J iff $C|_J = []$.

Conflict Analysis – Revisited

- ▶ Let *F* be a formula in CNF, *L* a literal, and *J* a partial interpretation.
- $C \in F$ is called conflict clause under J iff $C|_J = []$.
- A clause C is relevant for L (or is a reason for L) in F :: Jiff $C \in F$ and there exist I' and I such that J = I', L, I and $C|_I = [L]$.
- ▶ relevantL(L, F :: J) = { $C \in F | C$ is relevant for L in F :: J}.

INTERNATIONAL CENTER

Conflict Analysis – Revisited

- ▶ Let *F* be a formula in CNF, *L* a literal, and *J* a partial interpretation.
- $C \in F$ is called conflict clause under J iff $C|_J = []$.
- A clause C is relevant for L (or is a reason for L) in F :: Jiff $C \in F$ and there exist I' and I such that J = I', L, I and $C|_I = [L]$.
- ▶ relevantL(L, F :: J) = { $C \in F | C$ is relevant for L in F :: J}.
- A clause C is relevant (or is a reason clause) in F :: J iff there exists an L such that C is relevant for L in F :: J.
- ▶ relevant(F :: J) = { $C \in F | C$ is relevant in F :: J}.

INTERNATIONAL CENTER

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

INTERNATIONAL CENTER

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

$$\begin{array}{lll} F::() & \sim_{UNIT} & F::(\bar{4}) & (F|_{(\bar{4})} = \langle [1,2], [2,\bar{3}], [\bar{2},\bar{3}], [\bar{1},3] \rangle) \\ & \sim_{DECIDE} & F::(\bar{4},1) & (F|_{(\bar{4},1)} = \langle [2,\bar{3}], [\bar{2},\bar{3}], [\bar{3}] \rangle) \\ & \sim_{UNIT} & F::(\bar{4},13) & (F|_{(\bar{4},1,3)} = \langle [2], [\bar{2}] \rangle) \\ & \sim_{UNIT} & F::(\bar{4},1,3,2) & (F|_{(\bar{4},1,3,2)} = \langle [1] \rangle) \end{array}$$

We find

 $\mathsf{relevantL}(\overline{4},\textit{F}::(\overline{4},\dot{1},3,2)) = \{[\overline{4}]\}$

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

$$\begin{array}{lll} \text{relevantL}(\overline{4}, \textbf{\textit{F}} :: (\overline{4}, \dot{1}, 3, 2)) &= \{ [\overline{4}] \} \\ \text{relevantL}(1, \textbf{\textit{F}} :: (\overline{4}, \dot{1}, 3, 2)) &= \emptyset \end{array}$$

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

We find

INTERNATIONAL CENTER

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

We find

INTERNATIONAL CENTER

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$
- We may obtain

We find

Another Example

• Consider
$$F = \langle [\overline{1}, \overline{3}, 4], [\overline{2}, \overline{3}, 4] \rangle$$
.

We may obtain

We find

 $\mathsf{relevantL}(4, F :: (\dot{1}, \dot{2}, \dot{3}, 4)) = \{ [\overline{1}, \overline{3}, 4], [\overline{2}, \overline{3}, 4] \}$

INTERNATIONAL CENTER

Multiple Conflict Clauses

In the sequel

- ▶ we will apply UNIT whenever possible,
- > we will prefer literals wrt their absolut value,
- ▷ we prefer positive over negative literals.
- Consider $F = \langle [\overline{1}, 2], [\overline{1}, 3], [\overline{1}, 4], [\overline{2}, \overline{4}], [\overline{3}, \overline{4}] \rangle$.
- We obtain

$$\begin{array}{lll} F::() & \sim_{DECIDE} & F::(\dot{1}) & (F|_{(1)} = \langle [2], [3], [4], [\bar{2}, \bar{4}], [\bar{3}, \bar{4}] \rangle) \\ & \sim_{UNIT} & F::(\dot{1}, 2) & (F|_{(1,2)} = \langle [3], [4], [\bar{4}], [\bar{3}, \bar{4}] \rangle) \\ & \sim_{UNIT} & F::(\dot{1}, 2, 3) & (F|_{(1,2,3)} = \langle [4], [\bar{4}], [\bar{4}], [\bar{4}] \rangle) \\ & \sim_{UNIT} & F::(\dot{1}, 2, 3, 4) & (F|_{(1,2,3,4)} = \langle [1], [1] \rangle) \end{array}$$

• There are two conflict clauses, viz. $[\overline{2}, \overline{4}]$ and $[\overline{3}, \overline{4}]$.

- ▶ Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
 - ▶ after an application of UNIT to some *F* :: *J* and
 - ▷ if $F|_J$ contains two unit clauses [A] and [\overline{A}].

INTERNATIONAL CENTER

- ▶ Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
 - ▶ after an application of UNIT to some *F* :: *J* and
 - ▷ if $F|_J$ contains two unit clauses [A] and $[\overline{A}]$.
- Consider $F = \langle [\overline{1}, \overline{2}, 3], [\overline{2}, \overline{3}] \rangle$.
 - We obtain

$$\begin{array}{lll} F::() & \rightsquigarrow_{DECIDE} & F::(\dot{1}) & (F|_{(1)} = \langle [\bar{2},3], [\bar{2},\bar{3}] \rangle) \\ & & \searrow_{DECIDE} & F::(\dot{1},\dot{2}) & (F|_{(1,2)} = \langle [3], [\bar{3}] \rangle) \end{array}$$

INTERNATIONAL CENTER

- ▶ Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
 - ▶ after an application of UNIT to some *F* :: *J* and
 - ▷ if $F|_J$ contains two unit clauses [A] and $[\overline{A}]$.
- Consider $F = \langle [\overline{1}, \overline{2}, 3], [\overline{2}, \overline{3}] \rangle$.
 - We obtain

$$\begin{array}{lll} F::() & \sim_{\textit{DECIDE}} & F::(\dot{1}) & (F|_{(1)} = \langle [\bar{2},3], [\bar{2},\bar{3}] \rangle) \\ & & \sim_{\textit{DECIDE}} & F::(\dot{1},\dot{2}) & (F|_{(1,2)} = \langle [3], [\bar{3}] \rangle) \end{array}$$

- Two different conflicts are obtained
 - by applying unit wrt [3] or [3]
 - **>** yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.

- ▶ Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
 - ▶ after an application of UNIT to some *F* :: *J* and
 - ▷ if $F|_J$ contains two unit clauses [A] and $[\overline{A}]$.
- Consider $F = \langle [\overline{1}, \overline{2}, 3], [\overline{2}, \overline{3}] \rangle$.
 - We obtain

$$\begin{array}{lll} F::() & \sim_{\textit{DECIDE}} & F::(\dot{1}) & (F|_{(1)} = \langle [\bar{2},3], [\bar{2},\bar{3}] \rangle) \\ & & \sim_{\textit{DECIDE}} & F::(\dot{1},\dot{2}) & (F|_{(1,2)} = \langle [3], [\bar{3}] \rangle) \end{array}$$

- Two different conflicts are obtained
 - by applying unit wrt [3] or [3]
 - **>** yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.
- We assume that one particular conflict is selected.

- ▶ Recall We will apply UNIT whenever possible.
- Observation Conflicts can only arise
 - ▶ after an application of UNIT to some *F* :: *J* and
 - ▷ if $F|_J$ contains two unit clauses [A] and $[\overline{A}]$.
- Consider $F = \langle [\overline{1}, \overline{2}, 3], [\overline{2}, \overline{3}] \rangle$.
 - We obtain

$$\begin{array}{lll} F::() & \sim_{\textit{DECIDE}} & F::(\dot{1}) & (F|_{(1)} = \langle [\bar{2},3], [\bar{2},\bar{3}] \rangle) \\ & & \sim_{\textit{DECIDE}} & F::(\dot{1},\dot{2}) & (F|_{(1,2)} = \langle [3], [\bar{3}] \rangle) \end{array}$$

- Two different conflicts are obtained
 - by applying unit wrt [3] or [3]
 - **b** yielding the conflict clauses $[\overline{2}, \overline{3}]$ or $[\overline{1}, \overline{2}, 3]$, respectively.
- We assume that one particular conflict is selected.
- As we will see later, this selection is not very important.

Implication Graphs

- ▶ In the sequel we assume that $|\text{relevantL}(L, F :: J)| \le 1$ for all *L*.
 - ▷ If |relevantL(L, F :: J)| > 1 for some L, then

>> all relevant clauses wrt L except one are deleted and

- ▶ we write relevant L(L, F :: J) = C instead of relevant $L(L, F :: J) = \{C\}$.
- > Different selections lead to different implication graphs.

INTERNATIONAL CENTER

Implication Graphs

- ▶ In the sequel we assume that $|\text{relevantL}(L, F :: J)| \le 1$ for all *L*.
 - ▷ If |relevantL(L, F :: J)| > 1 for some L, then
 - all relevant clauses wrt L except one are deleted and
 - ▶ we write relevant L(L, F :: J) = C instead of relevant $L(L, F :: J) = \{C\}$.
 - > Different selections lead to different implication graphs.
- Let F be a formula in CNF and J a partial interpretation.
- ▶ The explanation of L' is the set $\{\overline{L} \mid L \in \text{relevantL}(L', F :: J) \setminus \{L'\}\}$
- An implication graph for F :: J is a graph $(\mathcal{V}, \mathcal{E})$, where
 - $\triangleright \mathcal{V} = J,$
 - $\triangleright \ \mathcal{E} = \{(L, L') \in \mathcal{V} \times \mathcal{V} \mid \text{there exists } C = \text{relevantL}(L', F :: J) \text{ and } \overline{L} \in (C \setminus \{L'\}\},\$
 - ▷ each $(L, L') \in \mathcal{E}$ is directed from L to L'.

Implication Graphs

- ▶ In the sequel we assume that $|\text{relevantL}(L, F :: J)| \le 1$ for all *L*.
 - ▷ If |relevantL(L, F :: J)| > 1 for some L, then
 - all relevant clauses wrt L except one are deleted and
 - ▶ we write relevant L(L, F :: J) = C instead of relevant $L(L, F :: J) = \{C\}$.
 - > Different selections lead to different implication graphs.
- Let F be a formula in CNF and J a partial interpretation.
- ▶ The explanation of L' is the set $\{\overline{L} \mid L \in \text{relevantL}(L', F :: J) \setminus \{L'\}\}$
- An implication graph for F :: J is a graph $(\mathcal{V}, \mathcal{E})$, where
 - $\triangleright \mathcal{V} = J,$
 - $\triangleright \ \mathcal{E} = \{(L, L') \in \mathcal{V} \times \mathcal{V} \mid \text{there exists } C = \text{relevantL}(L', F :: J) \text{ and } \overline{L} \in (C \setminus \{L'\}\},\$
 - ▷ each $(L, L') \in \mathcal{E}$ is directed from L to L'.
- It is sometimes convenient
 - ▶ to label a vertex by its decision level in J (depicted as subscript)
 - ▷ to label an edge by the clause who caused it (the reason).

Implication Graphs for an Old Example

- Let $F = \langle [1, 2], [2, \overline{3}], [\overline{2}, \overline{3}, 4], [\overline{1}, 3], [\overline{4}] \rangle$
 - ▷ Consider $J_1 = (\overline{4}, \dot{1}, 3)$
 - $\blacktriangleright \text{ relevant}(L, F :: J_1) = \{ [\overline{4}], [\overline{1}, 3] \}$

Implication Graphs for an Old Example

- Let $F = \langle [1, 2], [2, \overline{3}], [\overline{2}, \overline{3}, 4], [\overline{1}, 3], [\overline{4}] \rangle$
 - ▷ Consider $J_1 = (\overline{4}, \dot{1}, 3)$
 - $\blacktriangleright \text{ relevant}(L, F :: J_1) = \{ [\overline{4}], [\overline{1}, 3] \}$

Consider
$$J_2 = (\overline{4}, \dot{1}, 3, 2)$$

 $\blacktriangleright \text{ relevant}(L, F :: J_2) = \{ [\overline{4}], [\overline{1}, 3], [\overline{3}, 2] \}$

Implication Graphs – Another Example

▶ Let $F = \langle [\overline{1}, 8], [\overline{2}, \overline{4}, \overline{5}], [\overline{3}, \overline{9}], [\overline{2}, \overline{7}, 9], [4, 7], [\overline{6}, 7] \rangle$ ▶ Let $J = (\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1}).$

Conflict Graphs

- Consider F :: J and let $(\mathcal{V}, \mathcal{E})$ be the implication graph for F :: J.
- ▶ Let $C \in F$ and suppose $C|_J = []$.
- $(\mathcal{V}', \mathcal{E}')$ is the conflict graph for F :: J and C if

$$\triangleright \mathcal{V}' = \mathcal{V} \cup \{0\}$$
 and

$$\triangleright \ \mathcal{E}' = \mathcal{E} \cup \{(L,0) \mid L \in \mathcal{V} \text{ and } \overline{L} \in \mathcal{C}\}.$$

- ▶ 0 is called conflict node.
- Conflict graphs are acyclic.

INTERNATIONAL CENTER

The Conflict Graph of an Old Example

- Let $F = \langle [1,2], [2,\overline{3}], [\overline{2},\overline{3},4], [\overline{1},3], [\overline{4}] \rangle$.
- Consider $J = (2, 3, \dot{1}, \overline{4})$.
- ▶ Note $[\overline{2}, \overline{3}, 4]|_J = [].$

Conflict Graphs – Another Example (1)

- ▶ Let $F = \langle [\overline{1}, 8], [\overline{2}, \overline{4}, \overline{5}], [\overline{3}, \overline{9}], [\overline{2}, \overline{7}, 9], [4, 7], [\overline{6}, 7], [\overline{4}, 5, 6], [5, 6, 9] \rangle$.
- ▶ Let $J = (\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1}).$

▶ Note
$$[\overline{4}, 5, 6]|_J = [].$$

INTERNATIONAL CENTER

Conflict Graphs – Another Example (2)

- ▶ Let $F = \langle [\overline{1}, 8], [\overline{2}, \overline{4}, \overline{5}], [\overline{3}, \overline{9}], [\overline{2}, \overline{7}, 9], [4, 7], [\overline{6}, 7], [\overline{4}, 5, 6], [5, 6, 9] \rangle$.
- ▶ Let $J = (\overline{5}, \overline{6}, 4, \overline{7}, \overline{9}, \dot{3}, \dot{2}, 8, \dot{1}).$
- ▶ Note There is another conflict clause $[5, 6, 9]|_J = []$.

Reduced Conflict Graph

- Let $(\mathcal{V}, \mathcal{E})$ be a conflict graph.
- ▶ The reduced conflict graph of (V, E) is the subgraph of (V, E) containing all vertices which are connected to 0 and all edges between these vertces.

In the sequel, we consider only reduced conflict graphs.

Paths

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- ▶ Let $V_S = \{L \in V \mid L \text{ is a decision literal or its decision level is 0}\}.$
- ▶ Let $paths(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from nodes in \mathcal{V}_S to 0 in $(\mathcal{V}, \mathcal{E})$.
- Consider

▷
$$\mathcal{V}_S = \{1, \overline{4}\}.$$

▷ paths(\mathcal{V}, \mathcal{E}) = {(1, 3, 2, 0), (1, 3, 0), ($\overline{4}$, 0)}.

Paths – Another Example

$$\begin{array}{l} \triangleright \ \mathcal{V}_{\mathcal{S}} = \{2,3\} \\ \triangleright \ paths(\mathcal{V},\mathcal{E}) = \{ (2,\overline{5},0), (2,\overline{7},4,\overline{5},0), (2,\overline{7},4,0), (2,\overline{7},\overline{6},0), \\ (3,\overline{9},\overline{7},4,\overline{5},0), (3,\overline{9},\overline{7},4,0), (3,\overline{9},\overline{7},\overline{6},0) \} \end{array}$$

Steffen Hölldobler and Norbert Manthey SAT Solving – Conflict Analysis

Cuts

- ▶ Let (V, E) be a reduced conflict graph.
- A cut $(\mathcal{V}_R, \mathcal{V}_C)$ through $(\mathcal{V}, \mathcal{E})$ is a partition of \mathcal{V} into \mathcal{V}_R and \mathcal{V}_C such that
 - $\triangleright \mathcal{V}_R \cap \mathcal{V}_C = \emptyset,$
 - $\triangleright \mathcal{V}_R \cup \mathcal{V}_C = \mathcal{V},$
 - $\triangleright \mathcal{V}_{S} \subseteq \mathcal{V}_{R},$
 - \triangleright {0} $\subseteq \mathcal{V}_{\mathcal{C}}$, and
 - ▷ each $p \in paths(\mathcal{V}, \mathcal{E})$ is partitioned into two subpaths p_R and p_C such that
 - *p_R* and *p_C* have no vertex in common,
 - p is obtained by adding an edge from the end of p_R to the start of p_C ,
 - V_R contains all vertices occurring in p_R, and
 - \triangleright $\mathcal{V}_{\mathcal{C}}$ contains all vertices occurring in $p_{\mathcal{C}}$.

Cuts – Example

Consider

Cut Clauses

- ▶ Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through a reduced conflict graph $(\mathcal{V}, \mathcal{E})$.
- Let (V_R, E_R) be the subgraph of (V, E) which consists only of the vertices V_R and edges between elements of V_R.
- ► Let V'_R be the subset of V_R containing all vertices, where an outgoing edge was cut by (V_R, V_C).
- ▶ The cut clause C_R determined by (V_R, V_C) is the clause $\overline{V'_R}$.

Cut Clauses – Example

Consider

Initial Cuts

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- $(\mathcal{V}_R, \mathcal{V}_C)$ is an initial cut if $\mathcal{V}_C = \{0\}$.

Note The cut clause is the conflict clause.

Shifted Cuts

- Let $(\mathcal{V}, \mathcal{E})$ be a reduced conflict graph.
- ▶ Recall $V_S = \{L \in V \mid L \text{ is a decision literal or its decision level is 0}\}.$
- Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- ▶ Let (V_R, E_R) be the subgraph of (V, E) which consists only of the vertices V_R and edges between elements of V_R.
- ▶ Let $L \in \mathcal{V}_R \setminus \mathcal{V}_S$ such that the outdegree of L in $(\mathcal{V}_R, \mathcal{E}_R)$ is 0.
- ▶ $(\mathcal{V}_R \setminus \{L\}, \mathcal{V}_C \cup \{L\})$ is the cut obtained from $(\mathcal{V}_R, \mathcal{V}_C)$ by shifting *L*.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Corresponding Linear Resolution Derivation

We obtain

1 2 3 4 5 6 7 8 9	$\begin{array}{c} [\overline{3}, \overline{9}] \\ [\overline{2}, \overline{7}, 9] \\ [\overline{4}, 7] \\ [\overline{6}, 7] \\ [\overline{2}, \overline{4}, \overline{5}] \\ [\overline{5}, 6, 9] \\ [\overline{2}, \overline{4}, 6, 9] \\ [\overline{2}, \overline{4}, 7, 9] \\ [\overline{2}, 7, 9] \\ [\overline{2}, 7, 9] \end{array}$	relevant clause relevant clause relevant clause relevant clause conflict clause res(6,5) res(7,4) res(8,3) res(9,2)
10	[<u>2</u> , 7, 9] [<u>2</u> , 9]	res(9,2)
11	[2 , 3]	res(10,1)

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

Corresponding Linear Resolution Derivation

We obtain

1	[3 , 9]	relevant clause
2	[2, 7, 9]	relevant clause
3	[4, 7]	relevant clause
4	[6, 7]	relevant clause
5	$[\overline{2}, \overline{4}, \overline{5}]$	relevant clause
6	[5, 6, 9]	conflict clause
7	$[\overline{2}, \overline{4}, 6, 9]$	res(6,5)
8	[2 , 4 , 7, 9]	res(7,4)
9	[2, 7, 9]	res(8,3)
10	[2, 9]	res(9,2)
11	$[\overline{2}, \overline{3}]$	res(10,1)

Observation Cut-clauses corresponding to a cut, which was generated by a sequence of shifts from the initial cut, can also be generated by linear resolution derivations from the conflict clause using relevant clauses.

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let L* ∈ V be the decision literal with the highest decision level in V.
 L* is unique.
- ▶ Let $paths^*(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^* to 0 in $(\mathcal{V}, \mathcal{E})$.
 - \triangleright paths^{*}(\mathcal{V}, \mathcal{E}) \subseteq paths(\mathcal{V}, \mathcal{E}).

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- ▶ Let $L^* \in \mathcal{V}$ be the decision literal with the highest decision level in \mathcal{V} .
 - ▶ L* is unique.
- ▶ Let $paths^*(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^* to 0 in $(\mathcal{V}, \mathcal{E})$.
 - \triangleright paths^{*}(\mathcal{V}, \mathcal{E}) \subseteq paths(\mathcal{V}, \mathcal{E}).
- L ∈ V is a unique implication point (UIP) if it occurs in all paths in paths^{*}(V, E).
 - L* is always a UIP.
 - ▷ The decision level of an UIP is equal to the decision level of L^* .

Unique Implication Points

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- ▶ Let $L^* \in \mathcal{V}$ be the decision literal with the highest decision level in \mathcal{V} .
 - ▶ L* is unique.
- ▶ Let $paths^*(\mathcal{V}, \mathcal{E})$ be the set of all directed paths from L^* to 0 in $(\mathcal{V}, \mathcal{E})$.
 - \triangleright paths^{*}(\mathcal{V}, \mathcal{E}) \subseteq paths(\mathcal{V}, \mathcal{E}).
- L ∈ V is a unique implication point (UIP) if it occurs in all paths in paths*(V, E).
 - ▷ L* is always a UIP.
 - \triangleright The decision level of an UIP is equal to the decision level of L^* .
- The UIPs of a reduced conflict graph can be ordered:
 - ▶ The 1UIP is the UIP which is closest to 0.
 - ▶ The nUIP is the UIP which is *n*-closest to 0.

Unique implication Points – Example

Consider

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- ▶ Let *C* be the cut clause determined by (V_R, V_C) .

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- ▶ Let C be the cut clause determined by (V_R, V_C) .
- ► C is a UIP clause if
 - ▷ *C* contains a literal *L* such that \overline{L} is a UIP in (\mathcal{V}, \mathcal{E}) and
 - ▶ there is no literal in *C* whose level is identical to the level of *L*.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

UIP Clauses

- Let $(\mathcal{V}, \mathcal{E})$ be a (reduced) conflict graph.
- Let $(\mathcal{V}_R, \mathcal{V}_C)$ be a cut through $(\mathcal{V}, \mathcal{E})$.
- ▶ Let C be the cut clause determined by (V_R, V_C) .
- C is a UIP clause if
 - ▷ C contains a literal L such that \overline{L} is a UIP in $(\mathcal{V}, \mathcal{E})$ and
 - ▶ there is no literal in *C* whose level is identical to the level of *L*.
- C is a nUIP clause if
 - ▷ if C is a UIP clause and
 - ▶ if $L \in C$ such that \overline{L} is a UIP in $(\mathcal{V}, \mathcal{E})$ then \overline{L} is the nUIP in $(\mathcal{V}, \mathcal{E})$.

INTERNATIONAL CENTER

FOR COMPUTATIONAL LOGIC

UIP Clauses – Examples

Steffen Hölldobler and Norbert Manthey SAT Solving – Conflict Analysis

▶ Let $F = \langle [2,6], [\overline{8}, \overline{3}], [\overline{4}, \overline{6}], [\overline{1}, \overline{5}, 9, 10], [2, 4, 7], [\overline{1}, 5], [\overline{2}, 3, \overline{5}, \overline{9}], [\overline{5}, \overline{7}] \rangle$.

▶ Let $F = \langle [2,6], [\overline{8}, \overline{3}], [\overline{4}, \overline{6}], [\overline{1}, \overline{5}, 9, 10], [2, 4, 7], [\overline{1}, 5], [\overline{2}, 3, \overline{5}, \overline{9}], [\overline{5}, \overline{7}] \rangle$.

▶ Let $F = \langle [2,6], [\overline{8},\overline{3}], [\overline{4},\overline{6}], [\overline{1},\overline{5},9,10], [2,4,7], [\overline{1},5], [\overline{2},3,\overline{5},\overline{9}], [\overline{5},\overline{7}] \rangle$.

▶ Let $F = \langle [2,6], [\overline{8}, \overline{3}], [\overline{4}, \overline{6}], [\overline{1}, \overline{5}, 9, 10], [2, 4, 7], [\overline{1}, 5], [\overline{2}, 3, \overline{5}, \overline{9}], [\overline{5}, \overline{7}] \rangle$.

▶ Let $F = \langle [2,6], [\overline{8},\overline{3}], [\overline{4},\overline{6}], [\overline{1},\overline{5},9,10], [2,4,7], [\overline{1},5], [\overline{2},3,\overline{5},\overline{9}], [\overline{5},\overline{7}] \rangle$.

UIP Clauses – Remarks

▶ UIP clauses are not unique.

▷ In the previous example, [2, 7] and $[2, \overline{5}]$ are 1UIP clauses.

UIP Clauses – Remarks

▶ UIP clauses are not unique.

- ▷ In the previous example, [2, 7] and $[2, \overline{5}]$ are 1UIP clauses.
- Let
 - ▷ C be a UIP clause,
 - ▷ m the level of the literal whose complement is UIP, and
 - ▶ *n* the next highest level assigned to some literal in *C*.

An application of CDBL to F:: J using C removes all literals from J whose level is higher than n.

UIP Clauses – Remarks

UIP clauses are not unique.

- ▷ In the previous example, [2, 7] and $[2, \overline{5}]$ are 1UIP clauses.
- Let
 - ▶ C be a UIP clause,
 - > m the level of the literal whose complement is UIP, and
 - ▶ *n* the next highest level assigned to some literal in *C*.

An application of CDBL to F :: J using C removes all literals from J whose level is higher than n.

- Most modern SAT-solvers learn 1UIP clauses.
- ▶ If several 1UIP clauses exist, then often the shortest one is prefered.

Conflict Graphs vs Resolution Derivations

Consider the following linear resolution derivation:

1	[1,5]	relevant clause
2	[5,7]	relevant clause
3	[8 , 3]	relevant clause
4	$[\overline{1}, \overline{5}, 9, 10]$	relevant clause
5	$[\overline{2}, 3, \overline{5}, \overline{9}]$	relevant clause
6	[2, 4, 7]	relevant clause
7	[2,6]	relevant clause
8	[4 , 6]	conflict clause
9	[2, 4]	res(8,7)
10	[2, 7]	res(9,6)
11	[2, <u>5</u>]	res(10,2)
12	[1, 2]	res(12,1)

▶ Note [1, 2] is not a cut-clause! (for the given graph)

Pipatsriawat, Darwiche: On Modern Clause-Learning Satisfiability Solvers. Journal Automated Reasoning 44, 277-301:2010.

How can we construct a graph, such that [1,2] is a cut clause?

How to make $[\overline{1}, 2]$ a cut clause

- ▶ Let $F = \langle [2,6], [\overline{8}, \overline{3}], [\overline{4}, \overline{6}], [\overline{1}, \overline{5}, 9, 10], [2, 4, 7], [\overline{1}, 5], [\overline{2}, 3, \overline{5}, \overline{9}], [\overline{5}, \overline{7}] \rangle$.
- ▶ Let J =?.

