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Aims of the course

Obtain an understanding of key topics in database theory with a
special focus on query formalisms:

• Relational data model

• Basic and advanced query languages

• Expressive power of query languages

• Complexity of query answering + some algorithmic
approaches

• Modelling with constraints

Connect databases with other advanced topics in
logic/KR/formal methods
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Literature, prerequisites, related courses

• Serge Abiteboul, Richard Hull, Victor Vianu:
Foundations of Databases. Addison-Wesley. 1994.

– Available at http://webdam.inria.fr/Alice/
– Slight deviations in the lecture
– Further literature will be given for advanced topics

• Prerequisites: basics of first-order logic, Turing machines,
worst-case complexity

• Related courses at TUD:
– Advanced Logic
– Foundations of Semantic Web Technologies
– Introduction to Logic Programming
– Introduction to Constraint Programming
– Datenbanken (Grundlagen)
– Intelligent Information Systems

Markus Krötzsch, 13 April 2015 Foundations of Databases and Query Languages slide 4 of 42

http://webdam.inria.fr/Alice/


What is a database?

A Database Management System (DBMS) is a software to
manage collections of data.

 highly important class of software systems
 major role in industry and in research
 extremely wide variety of concepts and implementations

General three-level architecture of DBMS:

• External Level: Application-specific user views

• Logical Level: Abstract data model, independent of
implementation, conceptual view

• Physical Level: Data structures and algorithms,
platform-specific

In this lecture: focus on logical view for relational data model
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What is a database? (2)

Basic functionality of DBMS:
• Schema definition: specify how should data be logically organised
• Update: insert/delete/update stored data
• Query: retrieve stored data or information derived from it
• Administration: user rights management, configuration, recovery, data

export, etc.

Many related concerns:
• Persistence: data retained when DBMS is shut down
• Optimisation: ensure maximal efficiency
• Scalability: cope with increasing loads by adding resources
• Concurrency: support many update and query operations in parallel
• Distribution: combine data from several locations
• Interfaces: APIs, query languages, update languages, etc.
• . . .

In this lecture: schema, query languages, some optimisation
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Overview

1. Introduction | Relational data model
2. First-order queries
3. Complexity of first-order query answering (1)
4. Complexity of first-order query answering (2)
5. Query optimization
6. Conjunctive queries
7. Limits of first-order query expressiveness
8. Introduction to Datalog
9. Implementation techniques for Datalog

10. Path queries
11. Constraints (1)
12. Constraints (2)
13. “Buffer time”
14. Outlook: database theory in practice
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The Relational Data Model
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Database = collection of tables

Lines:

Line Type

85 bus

3 tram

F1 ferry

. . . . . .

Stops:

SID Stop Accessible

17 Hauptbahnhof true

42 Helmholtzstr. true

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

. . . . . . . . .

Connect:

From To Line

57 42 85

17 789 3

. . . . . . . . .

Every table has a schema:
• Lines[Line:string, Type:string]
• Stops[SID:int, Stop:string, Accessible:bool]
• Connect[From:int, To:int, Line:string]
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Towards a formal definition of “table”

A table row has one value for each column

 row = function from the attributes of the table schema to
specific values

Example: The row

SID Stop Accessible

. . . . . . . . .

42 Helmholtzstr. true

. . . . . . . . .

can be represented by the function:

f : {SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}
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Database = set of tables
Let dom (“domain”) be the (infinite) set of conceivable values in
tables.

For simplicity, we drop the datatypes of database columns and
assume that each column uses the same datatype that
supports all values in dom.

Definition
• A relation schema R[U] consists of a relation name R and a

finite set U of attributes (|U| is the arity of R[U])

• A table for R[U] is a finite set of functions from U to dom

• A database instance I is a finite set of tables

Note: we disregard the order and multiplicity of rows.

Tables are also called relation instances. The table with relation
schema R[U] in the database instance I is written RI .
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Database = set of relations
Observation: Attribute names don’t matter. Instead of the function

{SID 7→ 42, Stop 7→ "Helmholtzstr.", Accessible 7→ true}

we could also use a tuple:

〈42,"Helmholtzstr.", true〉

Necessary assumption: Attributes have a fixed order.

Definition
• A relation schema R[U] is defined as before

• A table for R[U] is a finite subset of dom|U|

• A database instance I is a finite set of tables

Recall that a subset of dom|U| is just a |U|-ary relation. Sets of
relations are also called relational structures.
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Database = interpretation of first-order logic

Recall:

• First-order logic is based on predicate symbols with a fixed
arity (we won’t need function symbols here)

• An interpretation I of first-order logic is a pair 〈∆I , ·I〉:
– ∆I is a set (the domain of interpretation)
– ·I maps n-ary predicates p to n-ary relations pI ⊆ (∆I)n

This is (almost) a database instance!

Definition
• domain of interpretation ∆I = database domain dom

• predicate symbol = relation name

• interpretation of predicate symbol (if finite!) = table

• finite first-order logic interpretation = database instance

Markus Krötzsch, 13 April 2015 Foundations of Databases and Query Languages slide 17 of 42



Database = interpretation of first-order logic

Recall:

• First-order logic is based on predicate symbols with a fixed
arity (we won’t need function symbols here)

• An interpretation I of first-order logic is a pair 〈∆I , ·I〉:
– ∆I is a set (the domain of interpretation)
– ·I maps n-ary predicates p to n-ary relations pI ⊆ (∆I)n

This is (almost) a database instance!

Definition
• domain of interpretation ∆I = database domain dom
• predicate symbol = relation name

• interpretation of predicate symbol (if finite!) = table

• finite first-order logic interpretation = database instance

Markus Krötzsch, 13 April 2015 Foundations of Databases and Query Languages slide 18 of 42



Database = set of facts
Another convenient way to write databases:

Lines(85,"bus")

Lines(F1,"ferry")

Stops(42,"Helmholtzstr.", true)

. . .

Definition
A fact is an expression p(t1, . . . , tn) where

• p is an n-ary predicate symbol

• t1, . . . tn are constant symbols

A database instance is a finite set of facts.

When interpreting these facts logically, their least model is
again the database instance (viewed as a first-order logic
interpretation).
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Visualising relations

Binary relations (sets of pairs) can be viewed as directed graphs.
Example:

Source Target

1 2

1 3

2 5

3 2

3 4

4 3

5 3

Many binary tables in one graph: use table name to label edges
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Database = hypergraph

What to do with tables of arity 6= 2?
 generalise graphs to hypergraphs

Definition
A hypergraph is a pair 〈V, E, ρ〉, where

• V is a set of vertices

• E is a set of edge names

• ρ maps each edge name e ∈ E to
an n-ary relation ρ(e) ⊆ Vn

In other words: finite hypergraphs are databases.
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Summary: the relational model

Relational databases are everywhere:

• sets of tables with named attributes (“named perspective”)

• sets of relations (“unnamed perspective”)

• first-order logic interpretations

• sets of logical facts (ground atoms)

• hypergraphs (and graphs as a special case)

. . . all restricted to finite sets

Important elements of the theory of relational databases are
very widely applicable, also to many datamodels that are not
the classical relational one (e.g., graph databases, RDF
databases, XML databases).
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The Relational Algebra
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Relational Algebra Queries

Query language based on a set of operations on databases.

Each operation refers to one or more tables and produces
another table
(we often simplify notation and write a table name rather than a table instance)

Main operations of the named perspective:

• Selection σ

• Projection π

• Join ./

• Renaming δ

• Difference −
• Union ∪
• Intersection ∩
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Selection
“Find all bus lines”

σType="bus"Lines

“Find all connections that begin and end in the same stop”

σFrom=ToConnect

Definition
The selection operator has the form σn=m

• n is an attribute name

• m is an attribute name or a constant value

Consider a table RI for R[U].

• For m constant value: σn=m(RI) = {f ∈ RI | f (n) = m}
• For m attribute name: σn=m(RI) = {f ∈ RI | f (n) = f (m)}

This is only defined if U contains the required attribute names.
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Projection
“Find all possible types of lines”

πTypeLines

“Find all pairs of adjacent stops on line 85”

πFrom,To(σLine="85"Connect)

Definition
The projection operator has the form πa1,...,an where each ai is
an attribute name.
Consider a table RI for R[U].

πa1,...,an(RI) =
{

f{a1,...,an} | f ∈ RI}
}

where f{a1,...,an} is the restriction of f to the domain {a1, . . . , an},
i.e., the function {a1 7→ f (a1), . . . , an 7→ f (an)}.
Of course this projection is only defined if ai ∈ U for each ai.
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Natural join
“Find all connections and their type of line”

Connect ./ Lines

Connect:

From To Line

57 42 85

17 789 3

. . . . . . . . .

Lines:

Line Type

85 bus

3 tram

F1 ferry

. . . . . .

Connect ./ Lines:

From To Line Type

57 42 85 bus

17 789 3 tram

. . . . . . . . . . . .

Definition
The natural join operator has the form ./.
Consider tables RI for R[U] and SI for S[V].

RI ./ SI = {f : U ∪ V → dom | fU ∈ RI and fV ∈ SI}

where fU (fV ) is the restriction of f to elements in U (V) as before
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Renaming
“Find all lines that depart from an accessible stop”
Stops:

SID Stop Accessible

57 Stadtgutstr. true

123 Gustav-Freytag-Str. false

. . . . . . . . .

Connect:

From To Line

57 42 85

17 789 3

. . . . . . . . .

We need to join Stops.SID with Connect.From use renaming

πSID
(
σAccessible="true"(Stops ./ δFrom,To,Line→SID,To,Line(Connect))

)
Definition
The renaming operator has the form δa1,...,an→b1,...,bn with all ai

mutually distinct attribute names, and likewise for all bi.
Consider a table RI for R[{a1, . . . , an}].

δa1,...,an→b1,...,bn(RI) = {f ◦ g | f ∈ RI and g : {bi 7→ ai}1≤i≤n}

where f ◦ g is function composition: (f ◦ g)(x) = f (g(x))
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Difference, Union, Intersection

Binary operators on tables of the same relational schema,
defined like the usual set operations.

“Find all stops where line 3 departs, but line 8 does not depart.”

“Find all stops where either line 3 or line 8 departs.”

“Find all stops where both line 3 and line 8 depart.”
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Table constants in queries

It is sometimes convenient to define constant tables in queries.

“Find all stops near Helmholtzstr. (SID 42), including
Helmholtzstr.”

δTo→StopId(πTo(σFrom="42"Connect)) ∪
{
{StopId 7→ 42}

}
One can generalise this to constant tables with more than one
column or more than one table (no additional expressive power,
see exercise).

Markus Krötzsch, 13 April 2015 Foundations of Databases and Query Languages slide 36 of 42



Reachability
Generalising the previous example:

“Stops that are Helmholtzstr.”

R0 = {{From 7→ 42}
}

“Stops that are next to Helmholtzstr.”

R1 = δTo→From(πTo(Connect ./ R0))

“Stops at distance 2 from Helmholtzstr.”

R2 = δTo→From(πTo(Connect ./ R1))

Stops reachable from Helmholtzstr. with a short-distance ticket:

R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

What about all stops reachable from Helmholtzstr.?
 see upcoming lectures . . .
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Summary and Outlook

The relational model is very versatile

Relational algebra allows us to define queries with operators

Many operators exist, not all are really needed (see exercise)

Open questions:

• What does this have to do with logic? (next lecture)

• How hard is it to actually answer such queries?
(complexity)

• How can we study the expressiveness of query
languages?
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