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Abstract

While classical logic is considered not expressive enough to model human rea-
soning, three-valued logic seems much better suited for this purpose. In [SvL08]
Stenning and van Lambalgen show that their consequence operator under Fit-
ting three-valued semantics can appropriately model human reasoning. Their
operator is defined similarly to the Fitting operator which has been studied
extensively. Even though their definitions and usage are very similar, it turns
out that some of their properties are fundamentally different. Thus, in this the-
sis we deepen the knowledge about the Stenning and van Lambalgen operator,
providing formal grounds for further investigation of relations between human
reasoning and logic.

First we look for conditions under which both operators are continuous and
when they acquire the property of being a contraction. We also introduce a
level mapping characterisation of the new operator that puts it within the same
framework with other three-valued semantics for logic programs, including the
Fitting and well-founded semantics. Then we turn our attention to the underly-
ing three-valued logic used to characterise these operators, dubbed the Fitting
semantics. We will see that under this semantics, the model of completed pro-
gram is not necessarily a model of the program itself. This happens because
under Fitting semantics, the law of equivalence does not hold. We show that
the  Lukasiewicz semantics is a good candidate to replace Fitting semantics since
it admits the law of equivalence while not changing the meaning or properties
of logic programs. Further, we present the core method, a connectionist model
generator for logic programs, that can easily be adapted to handle Stenning
and van Lambalgen’s approach. Finally, since under the new operator nega-
tive information is difficult to express in the program, we propose a number of
approaches to add this kind of expressivity to the formalism.

Keywords: logic programming, consequence operator, three-valued logics,
 Lukasiewicz semantics, Kleene semantics, Fitting semantics, Fitting operator,
Stenning and van Lambalgen operator, human modelling, cognitive science,
core method

vii



Contents

1 Introduction 1
1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 First-Order Language . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Syntax of Logic Programs . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Semantics of Logic Programs . . . . . . . . . . . . . . . . . . . . 7
2.4 Program Completion . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Consequence Operators . . . . . . . . . . . . . . . . . . . . . . . 9

3 Continuity Property 10
3.1 Order Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Complete Partial Order of Interpretations . . . . . . . . . . . . . 14
3.3 Fitting Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Stenning and van Lambalgen Operator . . . . . . . . . . . . . . . 16
3.5 Ground Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Contraction Property 22
4.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Acyclic and Acceptable Programs . . . . . . . . . . . . . . . . . . 23
4.3 Fitting Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Stenning and van Lambalgen Operator . . . . . . . . . . . . . . . 35
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Three-Valued Semantics for Logic Programs 39
5.1 Stenning and van Lambalgen Semantics . . . . . . . . . . . . . . 39
5.2 Fitting and Well-Founded Semantics . . . . . . . . . . . . . . . . 41
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Consequence Operators under  Lukasiewicz Semantics 44
6.1 Three-Valued Logics . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Fitting Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 SvL Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Connectionist System for the SvL Operator 58
7.1 The Core Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Human Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1 Human Reasoning – Modus Ponens . . . . . . . . . . . . . 61
7.2.2 Human Reasoning – Denial of Antecedent (DA) . . . . . . 61

viii



CONTENTS

7.2.3 Human Reasoning – Alternative Argument . . . . . . . . 62
7.2.4 Human Reasoning – Alternative Argument and DA . . . 63
7.2.5 Human Reasoning – Additional Argument . . . . . . . . . 63
7.2.6 Human Reasoning – Additional Argument and DA . . . . 65

8 Negative Facts 66
8.1 Stenning and van Lambalgen Negative Facts . . . . . . . . . . . . 66
8.2 Negative Facts as Constraints . . . . . . . . . . . . . . . . . . . . 67
8.3 Using Program Transformation to Compute Negative Facts . . . 69
8.4 Negative Facts as Default Negation in the Head . . . . . . . . . . 70
8.5 Negative Facts as Explicit Negation . . . . . . . . . . . . . . . . 71
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Conclusion and Future Work 74

References 77

ix



List of Tables

2.1 Truth values for three-valued logic . . . . . . . . . . . . . . . . . 8

6.1 Truth table for three-valued logic with different semantics . . . . 46
6.2 Common logical laws under three-valued logics . . . . . . . . . . 47

x



List of Figures

7.1 The stable states of the feed-forward cores for P1 and P2 (right) 60
7.2 The stable state of the feed-forward core for Pmarian1. . . . . . . 61
7.3 The stable state of feed-forward core for Pmarian2. . . . . . . . . 62
7.4 The stable state of feed-forward core for Pmarian3. . . . . . . . . 63
7.5 The stable state of feed-forward core for Pmarian4. . . . . . . . . 64
7.6 The stable state of feed-forward core for Pmarian5. . . . . . . . . 64
7.7 The stable state of feed-forward core for Pmarian6. . . . . . . . . 65

xi



Chapter 1

Introduction

It has been widely argued in the field of Cognitive Science that logic is inade-
quate for modelling human reasoning (see e.g. Byrne in [Byr89]). In this context,
“logic” is meant to be classical logic and, indeed, classical logic fails to capture
some well-documented forms of human reasoning. However, many non-classical
logics have been studied and widely used in the field of Artificial Intelligence.
These logics try to capture many assumptions or features that occur in common
sense reasoning like, for example, the closed world assumption [Rei78, Lif85] or
non-monotonic reasoning [BG94, NBR02, SvL05].

Recently, Stenning and van Lambalgen [SvL08] have suggested that com-
pleted logic programs can adequately model many human reasoning tasks. This
is somewhat surprising since the completion of a logic program is simply a clas-
sical theory. They describe conditionals as law-like relationships between an-
tecedents and consequents, allowing the antecedent to hide an endless number
of unstated assumptions. This implies that there may very well be exceptions to
the law but these exceptions do not falsify the law. For example, in case we have
a law-like condition “if A then B”, it is interpreted as “if A, and nothing abnor-
mal is the case, then B”, where what is abnormal is provided by the context.
In this sense, closed world assumption plays an important part in reasoning
with conditionals. Hence, the conditionals will be seen to be due to a special
form of a closed world assumption and can be formalized in logic programming.
By contrast, Byrne [Byr89] assumed that conditionals can be represented by
classical implication.

In their work, Stenning and van Lambalgen used the common three-valued
semantics introduced by Fitting [Fit85]. This semantics combines Kleene strong
three-valued logic for negation, conjunction, disjunction and implication with
complete equivalence, which was also introduced by Kleene [Kle52]. Complete
equivalence was used by Fitting to ensure that a formula of the form F ↔ F is
mapped to true under an interpretation which maps F to neither true nor false
(see [Fit85], p.300). Under the Fitting semantics, the law of equivalence (F ↔ G
is semantically equivalent to (F ← G)∧ (G← F )) does not hold anymore. This
is somewhat surprising as Fitting suggests a completion-based approach [Cla78],
where the if-halves of the definitions in a logic program are completed by adding
their corresponding only-if-halves. Under the Fitting semantics, a completed
definition p ↔ q may be mapped to true under an interpretation which maps
neither p← q nor q ← p to true.
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Introduction

Stenning and van Lambalgen also introduced a new three-valued operator
for logic programs that they claim is suitable for modelling human reasoning.
Their operator is only slightly different from the one defined by Fitting [Fit85].
We present below two examples to illustrate the difference between the Fitting
and the Stenning and van Lambalgen operator.

Suppose we want to model an agent driving a car. One rule would be that he
may cross an intersection if the traffic light shows green and there is no unusual
situation:

cross ← green,¬unusual situation. (1.1)

An unusual situation occurs if an ambulance wants to cross the intersection
from a different direction:

unusual situation ← ambulance crossing . (1.2)

In addition, suppose that the green light is indeed on:

green← >. (1.3)

Let Pcrossing be the set of clauses 1.1, 1.2 and 1.3. The least fixed point of
Fitting operator for Pcrossing is

lfp(ΦF,Pcrossing ) = 〈{green, cross}, {unusual situation, ambulance crossing}〉 .

We see that in the least fixed point, cross is mapped to true. Hence, not
knowing anything about an ambulance, our agent will assume that no ambulance
is present, hit the accelerator, and speed into the intersection. One should
observe that not knowing anything about an ambulance may be caused by the
fact that the agent’s camera is blurred or the agent’s microphone is damaged.
His assumption that no ambulance is present is made by default. On the other
hand,

lfp(ΦSvL,Pcrossing ) = 〈{green}, ∅}〉 .

In this case, crossing is neither true nor false. Hence, the agent doesn’t know
whether he may cross the intersection. Inspecting his rules he may find that in
order to satisfy the conditions for the first rule, he must verify that no ambulance
is crossing. In doing so, he may extend Pcrossing to P ′crossing = Pcrossing ∪
{ambulance crossing ← ⊥} yielding

lfp(ΦSvL,P′crossing
) = 〈{green, cross}, {unusual situation, ambulance crossing}〉 .

Now, the agent can safely cross the intersection.

The second example is taken from [Byr89]. Byrne has confronted individuals
with sentences like

If Marian has an essay to write, she will study late in the library.
She does not have an essay to write.
If she has textbooks to read, she will study late in the library.

The individuals are then asked to draw conclusions. In this example, only
4% of the individuals conclude that Marian will not study late in the library.
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Although Byrne uses these and similar examples to conclude that (classical)
logic is inadequate for human reasoning, Stenning and van Lambalgen have
argued in [SvL08] that the use of three-valued logic programs under completion
semantics is indeed adequate for human reasoning. They represent the scenario
by

Pstudy : l← e,¬ab1.
e← ⊥.

ab1 ← ⊥.
l← t,¬ab2.

ab2 ← ⊥.

where l denotes that Marian will study late in the library, e denotes that she has
an essay to write, t denotes that she has a textbook to read, and ab denotes ab-
normality. In this case, we find lfp(ΦSvL,Pstudy

) = 〈∅, {ab1, ab2, e}〉, from which
we conclude that it is unknown whether Marian will study late in the library.
On the other hand, lfp(ΦF,Pstudy

) = 〈∅, {ab1, ab2, e, t, l}〉. Using the Fitting op-
erator one would conclude that Marian will not study late in the library. Thus,
this operator leads to a wrong answer with respect to the discussed scenario
from human reasoning, whereas the Stenning and van Lambalgen operator does
not.

Further, Stenning and van Lambalgen stated that the least fixed point of
their operator is always a model of the program completion and also a minimal
model of the program (Lemma 4 (1.) in [SvL08]). This claim are, however, not
correct. We found out that the least fixed point may not even be a model of the
program [HR09b] and that this stems from the fact that the Fitting semantics
does not admit the law of equivalence.

These findings motivated further research that is presented in this thesis.
In the first part, we will compare the Fitting operator to the Stenning and
van Lambalgen operator. Their definitions and usage are very similar but it
will turn out that some of their properties are fundamentally different. Also,
while the former was studied extensively in the literature, this is not the case
with the latter, so our contribution is also in deepening the knowledge about
the new operator. We will look for conditions under which both operators are
continuous and also when they acquire the property of being a contraction. We
will introduce a level mapping characterisation of the new operator that puts it
within the same framework with other semantics examined in [HW02], including
the Fitting and the well-founded semantics.

The second part of this thesis is related to the properties of Fitting three-
valued semantics. We will show that the  Lukasiewicz semantics [ Luk20] may
be a good candidate to replace Fitting semantics since it admits the law of
equivalence while not changing the meaning or properties of logic programs.

In [HK94], a connectionist model generator for propositional logic programs
using recurrent networks with feed-forward core was presented. It was later
called the core method [BH06]. The core method has been extended and ap-
plied to a variety of programs including computing the immediate consequence
operators associated with logic programs. Turning the feed-forward core into a
recurrent network allows to compute or approximate the least model of a logic
program [HS99]. Kalinke has applied the core method to logic programs un-

3



Introduction 1.1 Thesis Structure

der the Fitting semantics. In the third part of this thesis, we present the core
method for Stenning and van Lambalgen’s approach.

Lastly, since under the new operator negative information is difficult to ex-
press in the program, we will propose a number of approaches to add this kind
of expressivity to the formalism. Their full realization is, however, left for future
research.

1.1 Thesis Structure

We begin with the preliminaries for the notation and terminology that we use
through the thesis in Chapter 2. Then we start with the first part which is about
the relations between the Fitting operator and the Stenning and van Lambalgen
operator. In Chapter 3 we discuss about the property of continuity. We continue
with the contraction property in Chapter 4. Finally, in Chapter 5 we review the
correlation between Fitting semantics, Stenning and van Lambalgen semantics
and the well-founded semantics.

In the second part, we discuss  Lukasiewicz semantics when used in the con-
text of logic programs. In Chapter 6, we first introduce the background of
three-valued logics and then we investigate the possibility of replacing the Fit-
ting semantics by the  Lukasiewicz semantics in logic programs and its effects on
the properties of fixed points of both operators.

Chapter 7 constitutes the final part of this thesis in which we present the
connectionist system for the Stenning and van Lambalgen operator based on
the core method.

To lead the future work, we will discuss in Chapter 8 about “negative facts”.
We will propose a number of definitions for negative facts, compare them and
discuss the advantages and disadvantages of each of them. In the final Chapter 9
we summarize our findings and point to some future work.

4



Chapter 2

Preliminaries

This chapter introduces general notation and terminology that we use through-
out this thesis. It is based on [Llo84] with some extensions. Note that these
preliminaries are for logic programming in general, whereas the background of
more specific topics (e.g. the metric theory and lattice theory) will be given
later on when it is needed.

The chapter starts with the introduction of the syntax of well-formed for-
mulae of a first order theory. Then it introduces the more specific syntax of
logic programs and continues with the description of a declarative semantics for
logic programs. At the end it introduces the definition of Fitting immediate
consequence operator and Stenning and van Lambalgen immediate consequence
operator.

2.1 First-Order Language

We consider an alphabet consisting of finite or countably infinite disjoint sets of
constants, function symbols and predicate symbols, an infinite set of variables,
the connectives ¬, ∨, ∧, ←, ↔, and punctuation symbols “(”, “,” and “)”.
Additionally, the alphabet also contains the special symbols > and ⊥ denoting
a valid and an unsatisfiable formula, respectively.

Next we turn to the definition of the first order language given by an alpha-
bet.

Definition 2.1 (Term). The set of terms is the smallest set defined by the
following rules:

1. A variable is a term.

2. A constant is a term.

3. If f is an n-ary function symbol (n ≥ 1) and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

A ground term is a term not containing variables.

We will use upper case letters to denote variables and lower case letters to
denote constants, function- and predicate symbols.

5



Preliminaries 2.2 Syntax of Logic Programs

Definition 2.2 (Formula). The set of (well-formed) formulae is the smallest
set defined by the following rules:

1. If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn)
is a formula (called an atomic formula or simply an atom).

2. If F and G are formulae, then so are (¬F ), (F ∧ G), (F ∨ G), (F ← G)
and (F ↔ G).

A propositional formula is a formula where all predicate symbols are of arity 0.
A ground formula is a formula with every term grounded. A literal is an atom
A or its negation ¬A.

To avoid having formulae cluttered with brackets, we adopt the following
precedence hierarchy to order the connectives:

¬ > { ∨ , ∧ } > ← > ↔

We are now ready to define a language as follows:

Definition 2.3 (Language). A language L given by an alphabet A consists of
the set of all formulae constructed from the symbols of A.

2.2 Syntax of Logic Programs

A logic program is a declarative, relational style of programming based on first-
order logic. In this section, we define the syntax of logic programs.

Definition 2.4 (Clause). A (program) clause is a formula of the form

A← B1 ∧ · · · ∧Bm (m ≥ 1)

A is an atom, and each Bi, 1 ≤ i ≤ m, is either a literal or >. A is called the
head and B1 ∧ · · · ∧ Bm the body of the clause. We usually write B1 ∧ · · · ∧Bm
simply as B1, . . . , Bm and we finish each clause with a dot as in Prolog.

We define a definite clause as a clause where every Bi, 1 ≤ i ≤ m, is either
an atom or >.

One should observe that the body of a clause must not be empty. A positive
fact is a clause of the form

A← >.

In addition, Stenning and van Lambalgen allow for so-called negative facts
of the form

A← ⊥.

Definition 2.5 (Logic Program). A (logic) program P is a finite set of clauses.
We say a program is definite if all of its clauses are definite. Moreover, an
extended (logic) program is a finite set of clauses and negative facts. A proposi-
tional program is a program where all clauses are propositional. A program is
ground if all its clauses are ground.

We assume that each non-propositional program contains at least one con-
stant symbol. Moreover, the language L underlying a program P shall contain
precisely the predicate, function and constant symbols occurring in P, and no
others.

6



Preliminaries 2.3 Semantics of Logic Programs

2.3 Semantics of Logic Programs

The declarative semantics of a logic program is given by a model-theoretic se-
mantics of formulae in the underlying language. This sections discusses in-
terpretations and models, concentrating particularly on the important class of
Herbrand interpretations.

Definition 2.6 (Herbrand Universe). The Herbrand universe UL for a language
L is the set of all ground terms that can be formed from the constants and
function symbols appearing in L. By UP we denote the Herbrand universe for
the language underlying the program P.

Definition 2.7 (Ground Instance). A ground instance of a formula F is any
ground formula that results from F by substituting all variables by terms in UL.
We denote by ground(P) the set of all ground instances of clauses in program
P.

In many cases, ground(P) is infinite. In the sequel, we will consider
ground(P) as a substitute for P, thus ignoring unification issues.

Definition 2.8 (Herbrand Base). The Herbrand base BL for a language L is
the set of all ground atoms that can be formed by using predicate symbols from
L and ground terms from UL as arguments. By BP we denote the Herbrand
base for the language underlying the program P.

Since in this work we only use Herbrand interpretations, we drop the quali-
fication “Herbrand”. Also, we are mainly concerned with three-valued logics, so
we will introduce the notion of a three-valued interpretation and a three-valued
model for logic programs.

Definition 2.9 (Interpretation). An interpretation I of a program P is a map-
ping from the Herbrand base BP to the set of truth values {>,⊥, u}. We
represent interpretations by pairs

〈
I>, I⊥

〉
, where the set I> contains all atoms

which are mapped to >, the set I⊥ contains all atoms which are mapped to ⊥,
and I> ∩ I⊥ = ∅. All atoms which occur neither in I> nor I⊥ are mapped to
u. We say an interpretation I is total if I> ∪ I⊥ = BP .

The truth value of arbitrary formulae under some interpretation can be
determined from a truth table as usual. We give in Table 2.1 the truth values
for connectives that correspond to the logic that Fitting used in [Fit85]. Later in
Chapter 6 we will consider other three-valued logics and compare the properties
of logic programs and operators with respect to them.

Definition 2.10 (Truth Value of a Formula). The logical value of ground for-
mulae can be derived from Table 2.1 in the usual way. A formula F is then true
under interpretation I, denoted by I(F ) = >, if all its ground instances are true
in I; it is false under I, denoted by I(F ) = ⊥, if there is a ground instance of F
that is false in I; and otherwise it is undefined under I, denoted by I(F ) = u.

Two formulae F and G are said to be semantically equivalent denoted by
F ≡ G if F and G have same truth value under all interpretations.

Definition 2.11 (Model). Let I be an interpretation. I is a model of a formula
F if I(F ) = >. For a program P, we say I is a model of P if I is a model for
every clause in P. Similarly, for a set of clauses C ⊆ P, we say I is a model of
C if I is a model for every clause in C.

7



Preliminaries 2.4 Program Completion

Table 2.1: Truth values for three-valued logic

¬
> ⊥
⊥ >
u u

∧ ∨ → ↔
> > > > > >
⊥ > ⊥ > > ⊥
u > u > > ⊥
> ⊥ ⊥ > ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > >
u ⊥ ⊥ u u ⊥
> u u > u ⊥
⊥ u ⊥ u > ⊥
u u u u u >

An information ordering among interpretations will also be useful in our
further considerations.

Definition 2.12 (Ordering Among Interpretations). Let I =
〈
I>, I⊥

〉
and

J =
〈
J>, J⊥

〉
be two interpretations. We write I ⊂ J if and only if I> ⊂ J>

and I⊥ ⊂ J⊥ and we write I ⊆ J if and only if I> ⊆ J> and I⊥ ⊆ J⊥. If I is a
collection of interpretations, then an interpretation I in I is called minimal in I
if and only if there is no interpretation J in I such that J ⊂ I. An interpretation
I is called least in I if and only if I ⊆ J for any interpretation J in I. A model
M of a program P is called minimal (resp. least) if it is minimal (resp. least)
among all models of P.

2.4 Program Completion

Usually a logic program is assumed to contain complete information in the sense
that anything not stated is false. Therefore, we derive ¬A from failure to derive
A which is often called negation as failure. To handle negation as failure in a
logic program, Clark [Cla78] introduces program completion, in which, loosely
speaking, ”if” is interpreted as ”if and only if”.

Definition 2.13 (Program Completion). Let P be a logic program. Consider
the following transformation:

1. Replace all clauses in ground(P) with the same head (ground atom) A←
Body1, A← Body2, . . . by the single expression A← Body1 ∨Body2 ∨ · · · .

2. If a ground atom A is not the head of any clause in ground(P) then add
A← ⊥.

3. Replace all occurrences of ← by ↔.

The resulting set of formulae is called completion of P and is denoted by
comp(P). One should observe that in step 1 there may be infinitely many
clauses with the same head resulting in a countable disjunction. However, its
semantic behavior is unproblematic.

8
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2.5 Consequence Operators

Let P be a logic program. A consequence operator of P is a function which
maps an interpretation of P to another interpretation of P. It expresses the
consequences of P when the bodies of its clauses are interpreted under the
input interpretation. In [Fit85], Fitting has defined an immediate consequence
operator as follows.

Definition 2.14 (Fitting Immediate Consequence Operator). Let I be an in-
terpretation and P a program. The Fitting immediate consequence operator is
defined as follows: ΦF,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥ } .

In their quest for models of human reasoning, Stenning and van Lambalgen
[SvL08] have introduced an immediate consequence operator for propositional
programs, which differs slightly from the Fitting operator. Here, we extend the
operator to first-order programs.

Definition 2.15 (Stenning and van Lambalgen Immediate Consequence Oper-
ator). Let I be an interpretation and P be an extended program. The Sten-
ning and van Lambalgen immediate consequence operator is defined as follows:
ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥}

The difference from the Fitting operator is only in the first line of the definition
of J⊥.
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Chapter 3

Continuity Property

Fixed points play a fundamental role in several areas of computer science and
logic for justifying induction and recursive definitions. The theory of fixed points
is concerned with the conditions which guarantee that a mapping F : X → X
of a set X into itself admits one or more fixed points, that is, points x ∈ X
for which F (x) = x. In the area of logic programming, many semantics of logic
programs are determined by a fixed point equation in which the domain and
the range of the operator is the set of interpretations.

We will start by introducing in Section 3.1 some basic notions of Order
Theory that studies various order relations on sets as well as the behaviour of
mappings on these sets. We will use two of important results of this theory
concerning a specific type of ordered sets, dubbed a complete partial order. In
Section 3.2 we will show that the space of (three-valued) interpretations on
which our consequence operators operate satisfies the conditions for being a
complete partial order (with respect to the ⊆ ordering).

The first result of Order Theory we will in our context use is the Knaster-
Tarski Fixed Point Theorem which states that each monotonic mapping on a
complete partial order has a least fixed point. In Sections 3.3 and 3.4 we will
show that the Fitting and Stenning and van Lambalgen operator, respectively,
is indeed monotonic and hence is guaranteed to have a least fixed point.

The second result of Order Theory we will use is the Kleene Fixed Point
Theorem which states that the least fixed point of a continuous mapping can be
computed by iterating the operator up to the first limit ω times starting from
the empty interpretation 〈∅, ∅〉. Continuity is a strictly stronger condition than
monotonicity and neither of the operators satisfies it in general. For the Fitting
operator this was shown in [Fit85] and we show the same for the Stenning and
van Lambalgen operator.

Finally, for complete partial orders continuity is equivalent to monotonicity,
so in Section 3.5 we study the case when the interpretation space is finite. This
allows us to conclude that both the Fitting and Stenning and van Lambalgen
operators for a propositional program are continuous. Then we generalize this
claim to ground programs for which the space of interpretations may be infinite
if they contain a function symbol. We provide a proof based on a transformation
to propositional programs.
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Continuity Property 3.1 Order Theory

3.1 Order Theory

This section introduces the prerequisite concepts and results of Order Theory
that we will use later on. The reader can refer to [Llo84, DP02] for a more
complete and elaborate study of these topics with many further references.

Definition 3.1 (Relation). Let S be a set. A (binary) relation R on S is a
subset of S × S. We will use the infix notation xRy to denote (x, y) ∈ R.

Definition 3.2 (Partial Order). A relation ≤ on a set S is a partial order if
the following conditions are satisfied:

1. Reflexivity: (∀x ∈ S)(x ≤ x).

2. Antisymmetry: (∀x, y ∈ S)((x ≤ y) ∧ (y ≤ x)⇒ (x = y)).

3. Transitivity: (∀x, y, z ∈ S)((x ≤ y) ∧ (y ≤ z)⇒ (x ≤ z)).

We also say that S is a partially ordered set with respect to the partial order ≤.

Partially ordered sets are very common in mathematics. For example, given
a set S, the set of all subsets of S, denoted by 2S , is a partial order with respect
to the set inclusion ⊆. Upper and lower bounds also play important roles in
Order Theory.

Definition 3.3 (Upper Bound and Lower Bound). Let S be a set with a partial
order ≤. Then a ∈ S is an upper bound of a subset X of S if for every x ∈ X
we have x ≤ a. Similarly, b ∈ S is a lower bound of X if for every x ∈ X we
have b ≤ x.

Definition 3.4 (Least Upper Bound and Greatest Lower Bound). Let S be a
set with a partial order ≤. We say a ∈ S is the least upper bound of a subset
X of S if a is an upper bound of X and for every upper bound a′ of X we have
a ≤ a′. If it exists, we denote the least upper bound of X by lub(X).

Similarly, b ∈ S is the greatest lower bound of a subset X of S if b is a lower
bound of X and for every lower bound b′ of X we have b′ ≤ b. If it exists, we
denote the greatest lower bound of X by glb(X).

Note that if it exists, the least upper bound of X is unique. This is because
if two least upper bounds a1, a2 of X existed, then a1, a2 are upper bounds of
X and a1 ≤ a2 and a2 ≤ a1. Consequently, by antisymmetry, a1 = a2. For the
same reasons, if it exists, the greatest lower bound of X is unique.

We are now almost ready to introduce the notion of a complete partial order.
The final missing piece is the definition of a directed set which will also be needed
to define the property of continuity.

Definition 3.5 (Directed Set). Let S be a partially ordered set and X be a
non-empty subset of S. X is directed if for every x, y ∈ X there exists some
z ∈ X such that x ≤ z and y ≤ z.

Definition 3.6 (Complete Partial Order). A partially ordered set C is a com-
plete partial order if

1. C has the least element and

11
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2. for every directed subset X of C there exists the least upper bound of X
in C.

As mentioned above, the next section will demonstrate that the space of
three-valued interpretations with respect to the ⊆ ordering forms a complete
partial order.

We now introduce the monotonicity and continuity property for mappings
on partial orders.

Definition 3.7 (Monotonic Mapping). Let S be partially ordered set and f :
S → S be a mapping. We say f is monotonic if for every x, y ∈ S such that
x ≤ y we have f(x) ≤ f(y).

Definition 3.8 (Continuous Mapping). Let S be partially ordered set and
f : S → S be a mapping. We say f is continuous if for every directed subset X
of S we have f(lub(X)) = lub(f(X)) where f(X) = { f(x) | x ∈ X }.

The following proposition shows that the set of continuous mappings is in-
cluded in the set of monotonic mappings.

Proposition 3.9. Every continuous mapping is monotonic.

Proof. Consider a continuous mapping f : S → S and some x, y ∈ S such that
x ≤ y. Then the set X = {x, y } is a directed subset of S and by continuity of
f we obtain

sup(f(X)) = f(sup(X))

Since sup(X) = y, we further obtain sup({ f(x), f(y) }) = f(y) and consequently
f(x) ≤ f(y) as desired.

Now we are ready to formulate the two important results of Order Theory
relevant to this work. The first is the Knaster-Tarski Fixed Point Theorem
which ensures that every monotonic mapping has a least fixed point.

Theorem 3.10 (Knaster-Tarski Fixed Point Theorem). Let C be a complete
partial order and f be a monotonic mapping on C. Then f has a least fixed
point.

Proof. See [DP02] page 187 Theorem 8.22.

Furthermore, monotonicity enables us to characterize the least fixed point
of f using transfinite induction as follows:

Proposition 3.11. Let C be a complete partial order with the least element
⊥, f be a monotonic mapping on C, x be the least fixed point of f and

x0 = ⊥ ,

xα = f(xα−1) for every non-limit ordinal α > 0 ,

xα = lub {xβ | β < α } for every limit ordinal α .

Then for some ordinal γ we find x = xγ .

Proof. First we prove by transfinite induction that for every ordinal α we have
xα ≤ x:

12
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1◦ For α = 0 the claim follows by the definition of ⊥.

2◦ Let α be an ordinal such that the claim holds for all β < α. We will
consider two cases:

a) If α is a non-limit ordinal, then xα = f(xα−1) and by the inductive
assumption we have xα−1 ≤ x. Hence, by the monotonicity of f we
directly obtain

xα = f(xα−1) ≤ f(x) = x .

b) If α is a limit ordinal, then xα = lub {xβ | β < α }. Further, for every
β < α we have xβ ≤ x and hence x is an upper bound of the set of the
set {xβ | β < α }. Consequently, since xα is the least upper bound
of that set, we obtain xα ≤ x.

Further, it cannot be the case that xα < x for all ordinals α, since then C would
have a higher cardinality than any ordinal.

The second important result is the Kleene Fixed Point Theorem which guar-
antees that for every continuous mapping, the least fixed point can be computed
by iterating the mapping up to ω times starting from the least element of the
complete partial order.

Theorem 3.12 (Kleene Fixed Point Theorem). Let C be a complete partial
order with the least element ⊥ and f be a continuous mapping on C. Then the
least fixed point of f is lub({ fn(⊥) | n ≥ 0 }).

Proof. See [DP02] page 183 Theorem 8.15 (ii).

Finally, we turn to the situation when the complete partial order is finite.
First we show that the pairwise upper bound property of a directed set X can
be extended to finite subsets of X. From this is also follows that every finite
directed set contains its own least upper bound.

Lemma 3.13. Let X be a directed set and Y be a finite subset of X. Then X
contains an upper bound of Y .

Proof. Suppose Y = { y1, y2, . . . , yn }. Then we can construct a sequence
{xi}ni=2 of elements of X such that

y1 ≤ x2 and y2 ≤ x2 ;
yi ≤ xi and xi−1 ≤ xi for each i ∈ { 3, 4, . . . , n } .

By induction on i it follows that xi ≤ xn for every i ∈ { 2, 3, . . . , n } and by
applying transitivity we obtain yi ≤ xn for each i ∈ { 1, 2, . . . , n }. Hence, xn is
an upper bound of Y in X.

Corollary 3.14. Any finite directed set contains its own least upper bound.

Proof. Let X be a finite directed set. Then by Lemma 3.13 it contains its own
upper bound x. Consider some other upper bound y of X. Then since x ∈ X,
we have x ≤ y and so x is also the least upper bound of X.
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The previous observations enable us to show that continuity is equivalent to
monotonicity in the case of a finite complete partial order. Consequently, the
conclusion of the Kleene Fixed Point Theorem can be applied to any monotonic
mapping on a finite complete partial order.

Proposition 3.15. Let C be a finite complete partial order and f be a mono-
tonic mapping on C. Then f is continuous.

Proof. Let X ⊆ C be some directed set. We need to prove that lub(f(X)) =
f(lub(X)). Since C is finite, X must also be finite and so by Corollary 3.14 X
must contain its own least upper bound lub(X) = x ∈ X. So we now need to
prove that

lub(f(X)) = lub({ f(y) | y ∈ X }) = f(x) .

To show that f(x) is an upper bound of f(X), take some y ∈ X. We have
y ≤ x because x is the least upper bound of X. Hence f(y) ≤ f(x) by the
monotonicity of f and we are done.

It remains to show that f(x) is the least upper bound of f(X). But since
f(x) ∈ f(X), for any upper bound x0 of f(X) we immediately obtain f(x) ≤ x0.
This observation finishes our proof.

Corollary 3.16. Let C be a finite complete partial order with the least element
⊥ and f be a monotonic mapping on C. Then the least fixed point of f is
lub({ fn(⊥) | n ≥ 0 }).

Proof. Follows from Proposition 3.15 and Theorem 3.12.

3.2 Complete Partial Order of Interpretations

In this section we will show that the set of all interpretations forms a complete
partial order with respect to set inclusion ⊆. In the following, whenever X is
some set of interpretations, we will use the following notation:

X> = { I> |
〈
I>, I⊥

〉
∈ X }

X⊥ = { I⊥ |
〈
I>, I⊥

〉
∈ X }

The next result shows that the least upper bound of a directed set of inter-
pretations always exists.

Proposition 3.17. Let X be a directed set of interpretations. Then the inter-
pretation I =

〈⋃
X>,

⋃
X⊥
〉

is the least upper bound of X.

Proof. First we will prove that I is an interpretation. Suppose it is not. Then
there is some atom A such that A ∈

⋃
X> and also A ∈

⋃
X⊥. But then for

some J1, J2 ∈ X we have A ∈ J>1 and A ∈ J⊥2 . Further, since X is directed, it
contains some interpretation J3 such that J1 ⊆ J3 and J2 ⊆ J3. It follows that
A ∈ J>3 and A ∈ J⊥3 , which contradicts the fact that J3 is an interpretation.

We will now show that I is an upper bound of X. This follows easily from
the definition of I: for any J ∈ X we have both J> ⊆

⋃
X> and J⊥ ⊆

⋃
X⊥.

Hence, J ⊆ I.
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It remains to show that I is also the least upper bound of X. Suppose to
the contrary that I0 is some upper bound of X such that I * I0. Then for some
atom A we have I(A) 6= u and I(A) 6= I0(A). Assume without loss of generality
that I(A) = > (the case I(A) = ⊥ follows by symmetric considerations). Then
A ∈

⋃
X>, so for some J ∈ X we have A ∈ J>. But then J * I0 contrary to the

fact that I0 is an upper bound of X. This contradiction finishes our proof.

As a Corollary we obtain that the set of interpretations is a complete partial
order. Notice it is not a complete lattice since it has no greatest element (but
many maximal elements, e.g. 〈BP , ∅〉 , 〈∅,BP〉 , . . . )

Corollary 3.18. The set of all interpretations I is a complete partial order
with respect to the set inclusion ⊆.

Proof. The reflexivity, antisymmetry and transitivity of set inclusion follow from
the basic properties of sets. The least element of I is 〈∅, ∅〉 and by the previous
Proposition every directed subset of I has the least upper bound in I. Hence,
I is a complete partial order with respect to ⊆.

3.3 Fitting Operator

Let us first recall again the definition of Fitting immediate consequence operator:
Let I be an interpretation and P a program. The Fitting immediate conse-

quence operator is defined as follows: ΦF,P(I) =
〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥ } .

In the previous section we proved that the set of interpretations is a complete
partial order. In this section we will investigate whether the Fitting operator is
in general monotonic or even continuous. We show in the following proposition
that the Fitting operator is monotonic and so by Knaster-Tarski Fixed Point
Theorem (Theorem 3.10), it has a least fixed point.

Proposition 3.19. Let P be a program. Then ΦF,P is a monotonic mapping.

Proof. Let I, J be interpretations such that I ⊆ J . We need to show that
ΦF,P(I) ⊆ ΦF,P(J).

Suppose A ∈ (ΦF,P(I))>. Then ΦF,P(I)(A) = >, so P contains some clause

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm

such that Bi ∈ I> and Bj ∈ I⊥ for all i, j with 1 ≤ i ≤ k, k + 1 ≤ j ≤ m.
But since I> ⊆ J> and I⊥ ⊆ J⊥, we obtain Bi ∈ J> and Bj ∈ J⊥ for all i, j.
Hence, ΦF,P(J)(A) = > or, equivalently, A ∈ (ΦF,P(J))>.

Now suppose A ∈ (ΦF,P(I))⊥. Then ΦF,P(I)(A) = ⊥, so for all clauses in
P of the form

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm
there is some i with 1 ≤ i ≤ k such that Bi ∈ I⊥ or some j with k+ 1 ≤ j ≤ m
such that Bj ∈ I>. But since I> ⊆ J> and I⊥ ⊆ J⊥, we obtain Bi ∈ J⊥ for
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some i or Bj ∈ J> for some j. So all clauses with head A have a false body in
J and hence ΦF,P(J)(A) = ⊥ or, equivalently, A ∈ (ΦF,P(J))⊥.

In [Fit85], it has been shown that for some programs, the Fitting operator
doesn’t achieve a fixed point in ω steps, where ω is the limit ordinal. For
completeness, we reproduce the counterexample from [Fit85] here:

Example 3.20. Consider the program P1:

P1 : p(a)← p(X), q(X).
p(s(X))← p(X).

q(b)← >.
q(s(X))← q(X).

Iterations of ΦF,P1 starting from 〈∅, ∅〉 are as follows:

ΦF,P1(〈∅, ∅〉) = 〈{ q(b) } , { p(b), q(a) }〉
Φ2
F,P1

(〈∅, ∅〉) = 〈{ q(b), q(s(b)) } , { p(b), q(a), p(s(b)), q(s(a)) }〉
ΦnF,P1

(〈∅, ∅〉) =
〈
{ q(sk(b)) | 0 ≤ k < n } , { p(sk(b)), q(sk(a)) | 0 ≤ k < n }

〉
ΦωF,P1

(〈∅, ∅〉) =
〈
{ q(sk(b)) | k ∈ N } , { p(sk(b)), q(sk(a)) | k ∈ N }

〉
Φω+1
F,P1

(〈∅, ∅〉) = ΦωF,P1
(〈∅, ∅〉) ∪ 〈∅, { p(a) }〉

Φω+n
F,P1

(〈∅, ∅〉) = ΦωF,P1
(〈∅, ∅〉) ∪

〈
∅, { p(sk(a)) | 0 ≤ k < n }

〉
Φω+ω
F,P1

(〈∅, ∅〉) = ΦωF,P1
(〈∅, ∅〉) ∪

〈
∅, { p(sk(a)) | k ∈ N }

〉
= Φω+ω+1

F,P1
(〈∅, ∅〉)

For the program above, ΦF,P1 infers after the first application to the empty
interpretation the interpretation 〈{ q(b) } , { p(b), q(a) }〉. Here, q(b) is true be-
cause it is a fact, p(b) and q(a) are false because there is no clause where the head
is either p(b) or q(a). After the first ω steps, ΦF,P1 infers that q(sk(b)) is true
and p(sk(b)) and q(sk(a)) are false for all k ∈ N. Furthermore, in the next step,
ΦF,P1 infers that p(a) is false because all of the clauses where p(a) is the head
have a false body. Only after ω+ω steps ΦF,P1 reaches a fixed point where the
fixed point is

〈
{ q(sk(b)) | k ∈ N } , { p(sk(b)), q(sk(a)), p(sk(a)) | k ∈ N }

〉
. Con-

sequently, ΦF,P1 is not continuous.

3.4 Stenning and van Lambalgen Operator

Let us recall again the definition of Stenning and van Lambalgen immediate
consequence operator [SvL08]:

Let I be an interpretation and P be an extended program. The Sten-
ning and van Lambalgen immediate consequence operator is defined as follows:
ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥}
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Continuity Property 3.4 Stenning and van Lambalgen Operator

This section is devoted to exploring the same properties of the Stenning and
van Lambalgen operator as were investigated for the Fitting operator in the
previous section. The results turn out to be the same: the Stenning and van
Lambalgen operator is in general monotonic, but not continuous. The following
proposition shows the former result:

Proposition 3.21. Let P be a program. Then ΦSvL,P is a monotonic mapping.

Proof. Let I, J be interpretations such that I ⊆ J . We need to show that
ΦSvL,P(I) ⊆ ΦSvL,P(J).

Suppose A ∈ (ΦSvL,P(I))>. Then ΦSvL,P(I)(A) = >, so P contains some
clause

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm
such that Bi ∈ I> and Bj ∈ I⊥ for all i, j with 1 ≤ i ≤ k, k ≤ j ≤ k + 1.
But since I> ⊆ J> and I⊥ ⊆ J⊥, we obtain Bi ∈ J> and Bj ∈ J⊥ for all i, j.
Hence, ΦSvL,P(J)(A) = > or, equivalently, A ∈ (ΦSvL,P(J))>.

Now suppose A ∈ (ΦSvL,P(I))⊥. Then ΦSvL,P(I)(A) = ⊥, so P contains a
clause of the form

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm
and for all such clauses there is some i with 1 ≤ i ≤ k such that Bi ∈ I⊥ or some
j with k + 1 ≤ j ≤ m such that Bj ∈ I>. But since I> ⊆ J> and I⊥ ⊆ J⊥,
we obtain Ai ∈ J⊥ for some i or Bj ∈ J> for some j. So all clauses with head
A also have a false body in J and hence ΦSvL,P(J)(A) = ⊥ or, equivalently,
A ∈ (ΦSvL,P(J))⊥.

As for continuity, we cannot use the same counterexample as for the Fitting
operator. This is because in case of the program P1, the Stenning and van
Lambalgen operator does reach a fixed point after ω steps:

Example 3.22. Consider the program P1:

P1 : p(a)← p(X), q(X).
p(s(X))← p(X).

q(b)← >.
q(s(X))← q(X).

Iterations of ΦSvL,P1 starting from 〈∅, ∅〉 are as follows:

ΦSvL,P1(〈∅, ∅〉) = 〈{ q(b) } , ∅〉
ΦnSvL,P1

(〈∅, ∅〉) =
〈
{ q(sk(b)) | 0 ≤ k < n } , ∅

〉
ΦωSvL,P1

(〈∅, ∅〉) =
〈
{ q(sk(b)) | k ∈ N } , ∅

〉
= Φω+1

SvL,P1
(〈∅, ∅〉)

Because there is no clause where p(b) or q(a) is the head, p(b) and q(a) are
still undefined after the first iteration. Consequently, p(sk(b)) and q(sk(a)) also
stay undefined in all the next iterations. Moreover, the bodies of clauses for
p(a) are all undefined and hence p(sk(a)) stays undefined for every k ∈ N and
all subsequent steps. In this case, the fixed point is reached in ω steps.

However, there are other programs for which Stenning and van Lambalgen
doesn’t reach a fixed point in ω steps. In the following example, ω+ 1 steps are
necessary to reach a fixed point:
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Example 3.23. Consider the following program:

P2 : q(a)← >.
q(s(X))← q(X).

p← ¬q(X).

Iterations of ΦSvL,P2 starting from 〈∅, ∅〉 are as follows:

ΦnSvL,P2
(〈∅, ∅〉) =

〈
{ q(sk(a)) | k ≤ n− 1 } , ∅

〉
ΦωSvL,P2

(〈∅, ∅〉) =
〈
{ q(sk(a)) | k ∈ N } , ∅

〉
Φω+1
SvL,P2

(〈∅, ∅〉) =
〈
{ q(sk(a)) | k ∈ N } , { p }

〉
Hence the Stenning and van Lambalgen operator cannot in general be con-

tinuous.

3.5 Ground Programs

As was shown in Corollary 3.15, in case the underlying complete partial order
is finite, monotonicity implies continuity and so both conditions become equiv-
alent (for the converse implication see Proposition 3.9). Both the Fitting and
Stenning and van Lambalgen operators are monotonic (Propositions 3.19 and
3.21, respectively), so in case the space of interpretations is finite, they will also
be continuous. One case in which the space of interpretations is finite is for
propositional programs. We immediately obtain the following proposition:

Proposition 3.24. Let P be a propositional program. Then both ΦF,P and
ΦSvL,P are continuous.

Proof. Follows from monotonicity of ΦF,P and ΦSvL,P (Propositions 3.19 and
3.21, respectively), Proposition 3.15 and the fact that the Herbrand base of P is
finite and hence the complete partial order of interpretations is also finite.

This result can be also be extended to ground programs.

Proposition 3.25. Let P be a ground program. Then both ΦF,P and ΦSvL,P
are continuous.

However, the Herbrand base of a ground program can still be infinite (in
case the program contains some function symbol) and consequently the set of
all interpretations is also infinite. Hence we cannot use the previous argument
to prove the above proposition. To overcome this problem, we can map the
ground program to a propositional program and show that the behaviour of the
operator is preserved.

The rest of this section is concerned only with the proof of Proposition 3.25.
We will assume that a ground program P is given and that AP is the finite
set of atoms occuring in P. We also define a transformation that will replace
each atom A ∈ AP by a new predicate symbol pA of arity 0, resulting in a
propositional program P. The continuity of ΦF,P and ΦSvL,P will then be
exploited to show the continuity of ΦF,P and ΦSvL,P .

Let us now start with a more formal definition of the above mentioned trans-
formation:
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Continuity Property 3.5 Ground Programs

Definition 3.26. By P we denote the propositional program resulting from
P by replacing every atom A ∈ AP by the propositional atom pA. Moreover,
for any interpretation I of P, by I we denote the interpretation of P such that
I(pA) = I(A) for every A ∈ AP .

We will also need a number of auxiliary results that will help us in our final
proof.

Lemma 3.27. Let X be a directed set of interpretations of P. Then X =
{ I | I ∈ X } is a directed set of interpretations of P.

Proof. Let I1, I2 ∈ X. Then I1, I2 ∈ X, so there is some I ∈ X such that
I1 ⊆ I and I2 ⊆ I. We will show that I1 ⊆ I and I2 ⊆ I. If pA ∈ I1

>
, then

A ∈ I>1 ⊆ I> and hence pA ∈ I
>

. On the other hand, if pA ∈ I1
⊥

, then
A ∈ I⊥1 ⊆ I⊥ and hence pA ∈ I

⊥
. Consequently, I1 ⊆ I. Similarly it can be

shown that I2 ⊆ I.

Lemma 3.28. Let X be a directed set of interpretations of P. Then lub(X) =
lub(X).

Proof. Let A ∈ AP . We need to show that lub(X)(pA) = lub(X)(pA). By defi-
nition we have lub(X)(pA) = lub(X)(A), so it will suffice to show lub(X)(A) =
lub(X)(pA).

By the previous Lemma and Proposition 3.17 we obtain lub(X) =〈⋃
X>,

⋃
X⊥
〉

and lub(X) =
〈⋃

X
>
,
⋃
X
⊥〉

where X>, X⊥, X
>

and

X
⊥

are defined as in Section 3.2. Further, we have

lub(X)(A) = > ⇐⇒ A ∈
⋃
X> ⇐⇒ (∃I ∈ X)

(
A ∈ I>

)
⇐⇒ (∃I ∈ X)

(
pA ∈ I

>)⇐⇒ (∃I ∈ X)
(
pA ∈ I>

)
⇐⇒ pA ∈

⋃
X
> ⇐⇒ lub(X)(pA) = >

lub(X)(A) = ⊥ ⇐⇒ A ∈
⋃
X⊥ ⇐⇒ (∃I ∈ X)

(
A ∈ I⊥

)
⇐⇒ (∃I ∈ X)

(
pA ∈ I

⊥)⇐⇒ (∃I ∈ X)
(
pA ∈ I⊥

)
⇐⇒ pA ∈

⋃
X
⊥ ⇐⇒ lub(X)(pA) = ⊥

From these two equivalences it follows that lub(X)(A) = lub(X)(pA).

Lemma 3.29. For any interpretation I of P we have

ΦF,P(I) = ΦF,P(I)

ΦSvL,P(I) = ΦSvL,P(I)

Proof. We will show the proof only for the Fitting operator, the proof for the
Stenning and van Lambalgen operator is analogous.

Let A ∈ AP . We need to show that ΦF,P(I)(pA) = ΦF,P(I)(pA). By defini-
tion we have ΦF,P(I)(pA) = ΦF,P(I)(A), so it will suffice to show ΦF,P(I)(A) =
ΦF,P(I)(pA). We will prove this by proving two equivalences, one showing that
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ΦF,P(I)(A) = > holds if and only if ΦF,P(I)(pA) = > and the other showing
that ΦF,P(I)(A) = ⊥ holds if and only if ΦF,P(I)(pA) = ⊥:

1. ΦF,P(I)(A) = > holds if and only if P contains some rule

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm

such that {B1, . . . , Bk } ⊆ I> and {Bk+1, . . . , Bm } ⊆ I⊥. This in turn
holds if and only if P contains a rule

pA ← pB1 , . . . , pBk
,¬pBk+1 , . . . ,¬pBm

such that { pB1 , . . . , pBk
} ⊆ I

>
and { pBk+1 , . . . , pBm

} ⊆ I
⊥

. In other
words, when ΦF,P(I)(pA) = >.

2. ΦF,P(I)(A) = ⊥ holds if and only if for all clauses in P of the form

A← B1, . . . , Bk,¬Bk+1, . . . ,¬Bm

there is either some i ∈ { 1, . . . , k } such that Bi ∈ I⊥ or some j ∈
{ k + 1, . . . ,m } such that Bj ∈ I>. This in turn holds if and only if
for all clauses in P of the form

pA ← pB1 , . . . , pBk
,¬pBk+1 , . . . ,¬pBm

there is either some i ∈ { 1, . . . , k } such that pBi
∈ I

⊥
or some j ∈

{ k + 1, . . . ,m } such that pBj
∈ I>. In other words, when ΦF,P(I)(pA) =

⊥.

Lemma 3.30. Let X be a directed set of interpretations of P. Then

lub(ΦF,P(X)) = ΦF,P(lub(X))

lub(ΦSvL,P(X)) = ΦSvL,P(lub(X))

Proof. By Lemmas 3.28 and 3.29 we have

lub(ΦF,P(X)) = lub(ΦF,P(X)) = lub(ΦF,P(X))

We know that X is a directed set by Lemma 3.27 and since P is propositional,
ΦF,P is continuous by Proposition 3.24. Hence lub(ΦF,P(X)) = ΦF,P(lub(X))
and by applying Lemmas 3.28 and 3.29 once again we obtain

ΦF,P(lub(X)) = ΦF,P(lub(X)) = ΦF,P(lub(X))

Hence lub(ΦF,P(X)) = ΦF,P(lub(X)). The claim for ΦSvL,P follows by analo-
gous considerations.

Proof of Proposition 3.25. Let X be a directed set of interpretations.
We show ΦF,P(lub(X)) = lub(ΦF,P(X)) by proving that ΦF,P(lub(X))(A) =
lub(ΦF,P(X))(A) for every atom A. We consider two cases:

1. If A /∈ AP , then for every interpretation I of P we have ΦF,P(I)(A) = ⊥.
It follows that ΦF,P(lub(X)) = ⊥ and also that ΦF,P(I)(A) = ⊥ for all
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I ∈ X. Consequently, lub(ΦF,P(X))(A) = ⊥ = ΦF,P(lub(X))(A) and our
proof is finished.

2. If A ∈ AP , then by Lemma 3.30 we have

ΦF,P(lub(X))(A) = ΦF,P(lub(X))(pA) = lub(ΦF,P(X))(pA)
= lub(ΦF,P(X))(A) .

We finish the proof by showing ΦSvL,P(lub(X))(A) = lub(ΦSvL,P(X))(A)
for every atom A. We consider two cases:

1. If A /∈ AP , then for every interpretation I of P we have ΦSvL,P(I)(A) = u.
It follows that ΦSvL,P(lub(X)) = u and also that ΦSvL,P(I)(A) = u for
all I ∈ X. Consequently, lub(ΦSvL,P(X))(A) = u = ΦSvL,P(lub(X))(A)
and our proof is finished.

2. If A ∈ AP , then by Lemma 3.30 we have

ΦSvL,P(lub(X))(A) = ΦSvL,P(lub(X))(pA) = lub(ΦSvL,P(X))(pA)
= lub(ΦSvL,P(X))(A) .
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Chapter 4

Contraction Property

Motivated by the Banach Contraction Theorem which states that every con-
traction mapping has a unique fixed point, we try to investigate whether the
Fitting and the Stenning and van Lambalgen operators are contractions or not.
Starting with the definition of acceptable programs from [AP90, AP93], Fitting
showed that the usual two-valued immediate consequence operator is a con-
traction for acceptable logic programs [Fit94]. He claimed that using the same
arguments, it is easy to show that the Fitting operator is also a contraction for
any acceptable program. Further, it has been shown in [AP93] that the two-
valued immediate consequence and the Fitting operator semantically coincide
on the class of acceptable programs.

In this chapter, we first present the necessary preliminaries that we use. In
particular, we define the notions of a metric and metric space and also the class
of acceptable programs. Then we show that the Fitting operator is a contraction
for any acceptable program using the same arguments as Fitting used in [Fit94]
for the two-valued immediate consequence operator.

Turning to the Stenning and van Lambalgen operator, we show that in gen-
eral it is not a contraction for the class of acceptable programs. Then we prove
that at least for acyclic logic programs, the Stenning and van Lambalgen oper-
ator is guaranteed to be a contraction. However, even for this more restricted
class of programs, it does not coincide with the two-valued immediate conse-
quence operator.

The chapter ends with a summary of our results and of the relation between
the Stenning and van Lambalgen operator, Fitting operator and two-valued
immediate consequence operator.

4.1 Metric Spaces

In this section we introduce the notions from metric spaces that we need later
on. For further information and references on this topic the readers can refer to
[BS89a, KK01, KS01].

Definition 4.1 (Metric). A metric or distance function on a space M is a
mapping

d :M×M→ R
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where R is the set of real numbers, such that:

d(x, y) = 0 if and only if x = y (m1)
d(x, y) = d(y, x) (m2)
d(x, y) ≤ d(x, z) + d(z, y) (m3)

A pseudo-metric is a metric except that the first condition is as follows.

x = y implies d(x, y) = 0 (m′1)

Definition 4.2 (Complete Metric Space). A metric space M is complete if
every Cauchy sequence converges. A sequence s1, s2, s3, . . . is Cauchy if, for
every ε > 0 there is an integer N such that for all n,m ≥ N, d(sn, sm) ≤ ε. The
sequence converges if there is an s such that, for every ε > 0, there is an integer
N such that for all n ≥ N, d(sn, s) ≤ ε.

Definition 4.3 (Contraction). Let M be a metric space. A mapping

f :M→M

is a contraction if for all x, y ∈M there exists a k ∈ R with 0 < k < 1 such that

d(f(x), f(y)) ≤ k· d(x, y)

Theorem 4.4 (Banach Contraction Theorem). A contraction mapping f
on a complete metric space has a unique fixed point. Further, the sequence
x, f(x), f(f(x)), . . . converges to this fixed point for any x.

Proof. The proof can be found in [Wil04].

4.2 Acyclic and Acceptable Programs

Let us start with the relatively simple and strict notion of an acyclic program.
The acyclicity of a program is guaranteed by the existence of a certain fixed
assignment of natural numbers to atoms that is called a level mapping.

Definition 4.5 (Level Mapping). A level mapping for a program P is a function

l : BP → N

where N is the set of natural numbers and BP is the Herbrand base for P. A
partial level mapping is a level mapping that may be undefined for some ground
atoms. We extend the definition of level mapping to a mapping from ground
literals to natural numbers by setting l(¬A) = l(A).

Definition 4.6 (Acyclic Program). Let P be a logic program and l a level
mapping for P. P is acyclic with respect to l if for every clause A← B1, . . . , Bm
in ground(P) we find that

l(A) > l(Bi) for all i with 1 ≤ i ≤ m.

P is acyclic if it is acyclic with respect to some level mapping.
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The problem of deciding whether a program is acyclic is, however, not de-
cidable [AB90]. Further, the condition of acyclicity restricts the ways in which
recursion can be used in the program. In some cases, these restrictions are too
strict, for example when transitively closed predicates need to be defined. In or-
der to overcome these limitations, the broader class of acceptable programs has
been defined [AP90, AP93]. This definition uses two-valued interpretations, so
before we start with the definition, let us take a look at the correlation between
two-valued and three-valued interpretations.

A three-valued interpretation I =
〈
I>, I⊥

〉
is called total if and only if

I> ∪ I⊥ = BP . Total three-valued interpretations directly correspond to two-
valued ones because they do not assign u to any atom. In particular, if we
represent each two-valued interpretation by the subset of BP of atoms that it
maps to true, then the three-valued interpretation I corresponds to the two-
valued interpretation I>. To avoid confusion, we will distinguish between the
positive component I> of a three-valued interpretation I and a two-valued inter-
pretation corresponding to I by denoting the latter by I>2 . This correspondence
can also be extended to the case of non-total three-valued interpretations and
amounts to assigning false to every atom that was undefined in I.

Similarly, a two-valued interpretation I>2 also uniquely identifies the total
three-valued interpretation I =

〈
I>2 ,BP \ I>2

〉
. To distinguish between the as-

signment of true by a two-valued and a three-valued interpretation, we will use
the symbols >2 and >3, respectively. Similarly, to distinguish the two-valued
and three-valued false we will use the symbols ⊥2 and ⊥3, respectively.

Let I>2 be a two-valued interpretation. I>2 is a two-valued model for a formula
F if I>2 (F ) = >2.

Remark. For the rest of this chapter, we use I>2 to denote a two-valued inter-
pretation and I to denote a three-valued interpretation.

Proposition 4.7. Let I be a three-valued interpretation and L a literal. Then

1. I(L) = >3 implies I>2 (L) = >2.

2. I>2 (L) = >2 implies I(L) 6= ⊥3, i.e. either I(L) = >3 or I(L) = u.

Proof. 1. Suppose L = A and I(L) = >3. Then, A ∈ I>, so I>2 (A) = >2.
Suppose L = ¬A and I(L) = >3. Then, A ∈ I⊥, so A /∈ I>2 . Hence,
I>2 (L) = >2.

2. Suppose L = A and I>2 (L) = >2. Then, A ∈ I>2 , so I(A) = >3. Suppose
L = ¬A and I>2 (L) = >2. Then, A /∈ I>2 , so I(L) 6= ⊥3.

The notion of an acceptable program was first introduced by Apt and Pe-
dreschi in [AP90] for definite logic programs and later extended in [AP93] for
logic programs. Intuitively, a program P is acceptable if for some level mapping
and a two-valued model M>2 of P, for all ground instances of the clauses of the
program, the level of the head is higher than the level of atoms in a certain
prefix of the body. Which prefix is considered is determined by the model M>2 .

Definition 4.8 (Acceptable Definite Program). Let P be a definite program, l
a level mapping for P and M>2 a two-valued model of P. P is called acceptable
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with respect to l and M>2 if for every clause A← B1, . . . , Bm in ground(P) the
following implication holds for all i with 1 ≤ i ≤ m:

M>2 (B1 ∧ · · · ∧Bi−1) = >2 implies l(A) > l(Bi).

P is called acceptable if it is acceptable with respect to some level mapping and
some model of P.

Thus, given a level mapping l and a model M>2 of P, in the definition of
acceptability with respect to l and M>2 for every clause A ← B1, . . . , Bm in
ground(P) we only require the level of A to be higher than the level of the
Bis in a certain prefix of B1, . . . , Bm. Which Bis are taken into account is
determined by the model M>2 . If M>2 (B1 ∧ . . . ∧ Bm) = >2, then all of them
are considered. Otherwise we consider only those whose index is less or equal
to k where k is the least index i for which M>2 (Bi) = ⊥2.

The following example gives an illustration of the idea underlying the above
definition.

Example 4.9. Consider the definite programs CalP1 and P2:

Peven1 : even(0)← >.
odd(s(0))← >.

even(s(X))← odd(X).
odd(s(X))← even(X).

Peven2 : even(0).
even(s(s(X)))← even(X).

even(X)← even(s(s(X))).

Both programs, Peven1 and Peven2, compute even numbers. Let M>2 =
{ even(sk(0)) | k ∈ { 0, 2, . . . } } ∪ { odd(sk(0)) | k ∈ { 1, 3, . . . } } be a model for
Peven1 and l(even(sk(0))) = k and l(odd(sk(0))) = k. Please note that for the
clause even(s(X)) ← odd(X), the level of even(s(X)) in the head is always
one greater than the level of odd(X) in the body of the clause. Similarly also
for the clause odd(s(X))← even(X). Hence, Peven1 is acceptable with respect
to the model M>2 and level mapping l. On the other hand, Peven2 is not
acceptable because there is a cycle in the program: l(s(s(X))) > l(X) and
l(X) > l(s(s(X))) will lead to a contradiction for any model and level mapping.

Now we generalize the above concept to acceptability of logic programs.
First, we define the notion of dependence on ground atoms in a program P.

Definition 4.10. Let P be a program and A and B be ground atoms.

• A refers to B if there is a clause in ground(P) with A in its head and B
or ¬B in its body.

• A depends on B if A = B, or there is a sequence A = B1, B2, . . . , Bn = B
where Bi refers to Bi+1 for all i with 1 ≤ i < n.

• NegP is the set of ground atoms A such that ground(P) contains a clause
with ¬A in its body.
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• Neg∗P is the set of ground atoms on which the atoms in NegP depend.

• P− is the set of clauses in P whose head contains an atom that has an
instance in Neg∗P .

Example 4.11. Suppose P1 is the following program:

P1 : p← q.

p← ¬r.
r ← s.

Then we have:

NegP1 = { r }
Neg∗P1

= { r, s }
P−1 = { r ← s. }

Definition 4.12 (Acceptable Program). Let P be a program, l be a level
mapping for P and M>2 be a two-valued model of P whose restriction to the
atoms in Neg∗P is a model for comp(P−). P is acceptable with respect to l and
M>2 if, for every clause A ← B1, . . . , Bm in ground(P), and for every i with
1 ≤ i ≤ m,

M>2 (B1 ∧ · · · ∧Bi−1) = >2 implies l(A) > l(Bi).

P is acceptable if it is acceptable with respect to some level mapping and some
model of P.

A program is acceptable if there is some two-valued model for it which is well
behaved with respect to the uses of negation in the program, and with respect
to which clause bodies are “simpler“ than clause heads. The essential difference
between this notion of simpler and that used in the definition of acyclicity is
that we do not look at the whole of a clause body but only at enough of it,
starting from the left, to know whether it is true or false in the model.

For a definite program P we have Neg∗P = ∅, so P− is empty and the above
definition coincides with the definition of acceptability for definite programs.

We will prove that for any acceptable program P, the Fitting operator ΦF,P
is a contraction and hence by the Banach Contraction Theorem has a unique
fixed point. Further, we will provide a counterexample showing that a similar
result does not hold for the Stenning and van Lambalgen operator. We will,
however, give a proof of a weaker result, in particular that the Stenning and
van Lambalgen operator is a contraction for any acyclic program P.

The fundamental notions needed to prove both results are metrics and
pseudo-metrics on the space of all three-valued interpretations. Such metrics
can be defined based on level mappings as follows:

Proposition 4.13. Let l be a partial level mapping and I and J be three-valued
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interpretations. The function dl : I × I → R defined as

dl(I, J) =


(

1
2

)n
I 6= J and I(A) = J(A) 6= u for all A with l(A) < n and
I(A) 6= J(A) or I(A) = J(A) = u for some A
with l(A) = n

0 otherwise

is a pseudo-metric. Further, if l is total, then dl is a metric.

Proof. To confirm that dl is a pseudo-metric, let us check one by one the con-
ditions from Def. 4.1. The weakened condition (m′1) is trivially fulfilled and
condition (m2) follows from the symmetry of the definition. The verification of
the triangle inequality in condition (m3) follows:

Let I, J and K be three-valued interpretations. If dl(I,K) = 0, then I and
K coincide on all atoms whose level is defined and are, hence, interchangeable as
arguments of the metric dl. So dl(I, J) = dl(K,J) = 0 + dl(K,J) = dl(I,K) +
dl(K,J). Similarly if dl(K,J) = 0, then K and J coincide on all atoms whose
level is defined and are, hence, interchangeable as arguments of the metric dl.
So dl(I, J) = dl(I,K) = dl(I,K) + 0 = dl(I,K) + dl(K,J).

For the principal case let us assume dl(I,K) =
(

1
2

)m and dl(K,J) =
(

1
2

)k for
some m, k ∈ N. Without loss of generality we may assume that m ≤ k. We will
show that dl(I, J) ≤

(
1
2

)m. Take some atom A with l(A) < m. Then we have
I(A) = K(A) 6= u and also K(A) = J(A) 6= u. Consequently, I(A) = J(A) 6= u
and we are done.

In case l is total, we need to prove that dl(I, J) = 0 implies I = J . Suppose
I 6= J . Then I and J do not coincide on some atoms. Take an atom A of
a minimal level such that either I(A) 6= J(A) or I(A) = J(A) = u. Then
dl(I, J) =

(
1
2

)l(A) 6= 0 and we are done.

Example 4.14. Suppose we have a program as follows.

Peven3 : even(0)← >.
even(s(X))← ¬even(X).

Let

I =
〈
{ even(sk(0)) | k ∈ { 0, 2, . . . } } , { even(sk(0)) | k ∈ { 1, 3, . . . } }

〉
,

J =
〈
{ even(sk(0)) | k ∈ { 0, 2, . . . } } , ∅

〉
and l(even(sk(0))) = k. Then, dl(I, J) = 1

2 because for n = 1

I(even(sn(0))) = ⊥ but J(even(sn(0))) = u .

The previous result also gives rise to the following definition:

Definition 4.15 (Metric Induced by a Level Mapping). For any (partial) level
mapping l, the (pseudo-)metric dl induced by l is defined as in the previous
proposition.
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4.3 Fitting Operator

This section is devoted to proving that the Fitting operator ΦF,P is a contraction
for any acceptable program P. Let us first recall the definition of the Fitting
operator.

Let I be an interpretation and P a program. The Fitting immediate conse-
quence operator is defined as follows: ΦF,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥ } .

In order to proceed with the proof, we will make the following assumptions:
Remark. For the rest of this section we assume that P is a program that is
acceptable with respect to the level mapping lP and the two-valued model M>2
of P. We will denote by M the total three-valued interpretation corresponding
to M>2 , i.e.

M =
〈
M>2 ,BP \M>2

〉
Further, let

(
M>2

)∗ be M>2 restricted to the ground atoms in Neg∗P and

M∗ =
〈(
M>2

)∗
,BP \

(
M>2

)∗〉
We will be using the following general facts in our proofs:

(F1) By the definition of acceptable program,
(
M>2

)∗ is a model of comp(P−),
so M∗ is also a model of comp(P−) and it follows from [Fit85] that
ΦF,P−(M∗) = M∗.

(F2) The behaviour of atoms inNeg∗P only depends on clauses in P−. More pre-
cisely, suppose A ∈ Neg∗P and I is any interpretation. Then ΦF,P(I)(A) =
ΦF,P−(I)(A)

An acceptable program is modular, in the sense that the behavior of atoms
in Neg∗P does not depend on the behavior of atoms which are not in Neg∗P . In
the following, we will first work with the atoms in Neg∗P , and later on with the
atoms which are not in Neg∗P .

We will now define a restriction l1 of the level mapping lP to atoms in Neg∗P
and prove that ΦF,P is a contraction with respect to the pseudo-metric induced
by l1.

Definition 4.16. We define the level mapping l1 as follows: If A ∈ Neg∗P , then
l1(A) = lP(A), and for all other ground atoms l1 is undefined. Further, let d1

be the pseudo-metric induced by the partial level mapping l1.

We show a convergence result directly.

Lemma 4.17. Let J be any three-valued interpretation. Then

d1(ΦF,P(J),M) = d1(ΦF,P−(J),M) ≤ 1
2
· d1(J,M)

Proof. The pseudo-metric d1 only depends on atoms in Neg∗P and by general
fact (F2), ΦF,P(J) and ΦF,P−(J) agree on such atoms, so we can easily see that
the equality d1(ΦF,P(J),M) = d1(ΦF,P−(J),M) holds.
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Suppose d1(J,M) =
(

1
2

)n, so that J and M agree on all ground atoms A
with l1(A) < n but differ on a ground atom A such that l1(A) = n. Recall that
M is total, so to prove d1(ΦF,P−(J),M) ≤ 1

2 · d1(J,M) it is enough to show that
ΦF,P−(J) and M agree on all ground atoms A with l1(A) ≤ n.

Let A be a ground atom with l1(A) ≤ n. Since l1(A) is defined, A ∈ Neg∗P .
Suppose ΦF,P−(J)(A) 6= M(A). Because M is total, it cannot be the case that
M(A) = u, so we have two cases to consider:

1. M(A) = >3 and ΦF,P−(J)(A) 6= >3. By general fact (F1) we obtain
M(A) = M∗(A) = ΦF,P−(M∗)(A) = >3. So there exists some clause
A← B1, . . . , Bm in ground(P−) such that M∗(Bi) = M(Bi) = >3 for all
1 ≤ i ≤ m. Using Prop. 4.7(1) we obtain M>2 (B1 ∧ · · · ∧Bm) = >2, so by
the acceptability of P with respect to M>2 we obtain for all 1 ≤ i ≤ m

l(Bi) < l(A) ≤ n

Since d1(J,M) =
(

1
2

)n, J and M must agree on all such Bi, so
ΦF,P−(J)(Bi) = >3. But at the same time ΦF,P−(J)(A) 6= >3, so there
also exists some k with 1 ≤ k ≤ m such that ΦF,P−(J)(Bk) 6= >3, which
is a contradiction.

2. M(A) = ⊥3 and ΦF,P−(J)(A) 6= ⊥3. By the latter it follows that there
must be a clause A ← B1, . . . , Bm in ground(P−) such that J(Bi) 6= ⊥3

for all 1 ≤ i ≤ m. Because M(A) = ⊥3, we obtain from the general fact
(F1) that M(A) = M∗(A) = ΦF,P−(M∗)(A) = ⊥3. It follows that there
exists a k with M∗(Bk) = ⊥3 and M∗(Bi) = >3 for 1 ≤ i < k. Hence
M>2 (B1∧ · · ·∧Bk−1) = >2 by Proposition 4.7(1) and by the acceptability
of P with respect to M>2 we have that for all 1 ≤ i ≤ k

l(Bi) < l(A) ≤ n

Since d1(J,M) =
(

1
2

)n, J and M must agree on Bk, that is J and M∗

must agree on Bk and they do not, which is a contradiction.

It follows immediately from this Lemma that any sequence of interpreta-
tions J,ΦF,P(J),ΦF,P(ΦF,P(J)), . . . converges to M given the pseudo-metric
d1. That is, the behavior of atoms in Neg∗P is completely determined by the
program P and agrees on them with the model M .

Now we turn to the atoms which are not in Neg∗P . This time we will find
their behavior is also uniquely characterized, but need not agree with M . We
will use a metric essentially consisting of two parts. One part measures how close
the interpretation of atoms in Neg∗P is to their meaning in M . This is much like
what we did with d1. The other part concerns itself with atoms which are not
in Neg∗P . We will focus on the existence of contradictions to the “assertions” of
M and how significant they are.

Definition 4.18. We define the level mapping l2 as follows: If A /∈ Neg∗P , then
l2(A) = lP(A), and for all other ground atoms l2 is undefined. Further, let d2

be the pseudo-metric induced by the partial level mapping l2.

Definition 4.19. A three-valued interpretation J correctly asserts a ground
atom A if J(A) = >3 implies M>2 (A) = >2, that is either J(A) = ⊥3 or
J(A) = u or M>2 (A) = >2.
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Definition 4.20. The mapping ρ on ground atoms which are not in Neg∗P is
defined as follows:

• set ρ(J) = 0 if J correctly asserts all ground atoms A /∈ Neg∗P ,

• otherwise, set ρ(J) =
(

1
2

)n when n is the smallest integer such that J does
not correctly assert a ground atom A /∈ Neg∗P with l2(A) = n.

Definition 4.21. We define the mapping d3 : I × I → R for any three-valued
interpretations I, J as:

d3(I, J) =

{
0 if I = J

max { d1(I,M), d1(J,M), d2(I, J), ρ(I), ρ(J) } if I 6= J

In the following, we will show that the mapping d3 we just defined is a metric
with respect to which the Fitting operator is a contraction. A few preparatory
claims are in place here. First of all, we need to show that d3 is a metric.
Then we need to prove that the space of all interpretations is a complete metric
space with respect to the metric d3. Finally, we can turn to showing that the
Fitting operator is a contraction in this metric space and hence by the Banach
Contraction Theorem has a unique fixed point that can be reached by iterating
it from any interpretation.

Let’s get started by showing that d3 satisfies all the conditions for being a
metric:

Lemma 4.22. Let S, T, U ⊆ R be finite sets of real numbers such that for every
s ∈ S there are some t ∈ T and u ∈ U such that s ≤ t+ u. Then

max(S) ≤ max(T ) + max(U)

Proof. Since S is finite, for some smax ∈ S is holds that smax = max(S). Let
t ∈ T and u ∈ U be such that smax ≤ t+ u. We immediately obtain

max(S) = smax ≤ t+ u ≤ max(T ) + max(U) .

Proposition 4.23. The mapping d3 is a metric.

Proof. We will verify that the conditions (m1), (m2) and (m3) hold for d3.
For condition (m1), suppose first that d3(I, J) = 0 and I 6= J for some

three-valued interpretations I, J . We will derive a conflict. We have d1(I,M) =
d1(J,M) = d2(I, J) = ρ(I) = ρ(J) = 0. From I 6= J we obtain that I and J do
not agree on some atoms. Let A be some atom with minimal lP(A) such that
either I(A) 6= J(A) or I(A) = u or J(A) = u. We will consider two cases:

1. If A ∈ Neg∗P , then from d1(I,M) = d1(J,M) = 0 we obtain I(A) =
J(A) = M(A) 6= u which contradicts the fact that either I(A) 6= J(A) or
I(A) = J(A) = u.

2. If A /∈ Neg∗P , then from d2(I, J) = 0 we obtain I(A) = J(A) 6= u which
contradicts the fact that either I(A) 6= J(A) or I(A) = J(A) = u.

For the converse implication assume I = J . Then d3(I, J) = 0 by definition.
The condition (m2) follows directly from the symmetry of d3 and d2.
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Now let’s verify the condition (m3). Let I, J,K be three-valued interpreta-
tions. If I = J , then d3(I, J) = 0, so the inequality is trivially satisfied. Assume
I 6= J . If I = K, then d3(I,K) = 0 and d3(I, J) = d3(K,J) = d3(J,K) =
0 + d3(J,K) = d3(I,K) + d3(K,J). Similarly if J = K, then d3(J,K) = 0 and
d3(I, J) = d3(I,K) = d3(I,K) + 0 = d3(I,K) + d3(K,J).

So we can assume that I, J,K are pairwise distinct, i.e. I 6= J 6= K 6= I.
Then,

d3(I, J) = max { d1(I,M), d1(J,M), d2(I, J), ρ(I), ρ(J) } = max(S) ,

d3(I,K) = max { d1(I,M), d1(K,M), d2(I,K), ρ(I), ρ(K) } = max(T ) ,

d3(J,K) = max { d1(K,M), d1(J,M), d2(K,J), ρ(K), ρ(J) } = max(U)

where

S = { d1(I,M), d1(J,M), d2(I, J), ρ(I), ρ(J) } ,

T = { d1(I,M), d1(K,M), d2(I,K), ρ(I), ρ(K) } ,

U = { d1(K,M), d1(J,M), d2(K,J), ρ(K), ρ(J) } .

Further, since d2 is a pseudo-metric (Proposition 4.13), it satisfies condition
(m3), i.e.

d2(I, J) ≤ d2(I,K) + d2(K,J) (4.1)

Our aim is to show d3(I, J) ≤ d3(I,K) + d3(K,J), i.e. that

max(S) ≤ max(T ) + max(U) .

It can be verified easily that this directly follows from Lemma 4.22 and (4.1).

Now we will aim to show that the space of three-valued interpretations is a
complete metric space. In order to prove this result, we will need the following
lemma:

Lemma 4.24. Let I, J be three-valued interpretations such that d3(I, J) ≤(
1
2

)n+1. Then for every atom A with lP(A) ≤ n we have I(A) = J(A).

Proof. If I = J , then the claim follows trivially. Otherwise d3(I, J) ≤
(

1
2

)n+1

implies that each d1(I,M), d1(J,M) and d2(I, J) is ≤
(

1
2

)n+1. Take some atom
A with lP(A) ≤ n. We will consider two cases:

a) If A ∈ Neg∗P , then from d1(I,M) ≤
(

1
2

)n+1 and d1(J,M) ≤
(

1
2

)n+1 we
obtain that I(A) = M(A) = J(A) 6= u and we are done.

b) If A /∈ Neg∗P , then from d2(I, J) ≤
(

1
2

)n+1 we directly obtain I(A) =
J(A) 6= u and we are done.

We are now ready to show that the space of all three-valued interpretations
with the metric d3 is a complete metric space.

Proposition 4.25. The space of three-valued interpretations using the metric
d3 is a complete metric space.
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Proof. Suppose {Sk}∞k=1 is a Cauchy sequence of interpretations. Then for any
n ∈ N there must be some K ∈ N such that for any k1, k2 ≥ K we have

d3(Sk1 , Sk2) ≤
(

1
2

)n+1

Let Kn be the least such K for every n ∈ N. This definition implies

Kn1 ≤ Kn2 for any n1, n2 ∈ N with n1 ≤ n2.

Let us define our limit interpretation S for any atom A as S(A) = SKl
(A)

where l = lP(A).
We now need to prove that for any ε > 0 there is some K ∈ N such that for

any k ≥ K we have d3(S, Sk) ≤ ε. Choose some ε > 0 and let n ∈ N be such
that

(
1
2

)n+1 ≤ ε. We will prove d3(S, Sk) ≤
(

1
2

)n+1 for any k ≥ Kn from which
the claim will follow.

We will first prove an auxiliary claim: For any atom A with lP(A) ≤ n and
any k ≥ Kn it holds that

S(A) = SKn(A) = Sk(A) (4.2)

Proof. Let lP(A) = l ≤ n. Then Kl ≤ Kn ≤ k and hence by the definition of Kl

we have d3(SKl
, SKn) ≤

(
1
2

)l+1 and also d3(SKl
, Sk) ≤

(
1
2

)l+1. Consequently,
by the previous Lemma we have S(A) = SKl

(A) = SKn(A) = Sk(A).

Now we are ready to proceed with the main proof. Choose some k1 ≥ Kn.
In case S = Sk1 we have d3(S, Sk1) = 0 and we are done. Now let’s consider
a marginal case in which Sk1 = Sk for all k ≥ Kn. In that case we also have
S = Sk1 because

• For any atom A with lP(A) ≤ n we have by (4.2) S(A) = Sk1(A) and

• For any atom A with lP(A) = l > n we have S(A) = SKl
(A) for some

Kl ≥ Kn. Therefore Sk1 = SKl
and hence S(A) = Sk1(A).

Let’s move to the principal case in which S 6= Sk1 and also Sk1 6= Sk2 for
some k2 ≥ Kn. Then

d3(Sk2 , Sk1) = max { d1(Sk2 ,M), d1(Sk1 ,M), d2(Sk2 , Sk1), ρ(Sk2), ρ(Sk1) }

and by the definition of Kn also d3(Sk2 , Sk1) ≤
(

1
2

)n+1 because both k2 ≥ Kn

and k1 ≥ Kn. Consequently also each of d1(Sk2 ,M), d1(Sk1 ,M), d2(Sk2 , Sk1),
ρ(Sk2) and ρ(Sk1) is ≤

(
1
2

)n+1. Furthermore, by (4.2) we obtain S(A) = Sk2(A)
for any atom A with lP(A) ≤ n. But then by the definitions of d1, d2 and ρ we
obtain that each of d1(S,M), d2(S, Sk1) and ρ(S) is also ≤

(
1
2

)n+1. Hence

d3(S, Sk1) = max { d1(S,M), d1(Sk1 ,M), d2(S, Sk1), ρ(S), ρ(Sk1) } ≤
(

1
2

)n+1

as desired.

Now we are finally ready to prove that the Fitting operator is a contraction
in our metric space.
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Theorem 4.26. ΦF,P is a contraction relative to the metric d3.

Proof. We will show that d3(ΦF,P(I),ΦF,P(J)) ≤ 1
2 · d3(I, J). The claim follows

trivially in case I = J , so assume I 6= J and d3(I, J) ≤
(

1
2

)n for some n ≥ 0.
Then all of d1(I,M), d1(J,M), d2(I, J), ρ(I) and ρ(J) are ≤

(
1
2

)n. From Lemma
4.17 we get that d1(ΦF,P(I),M) and d1(ΦF,P(J),M) are≤

(
1
2

)n+1, so it remains
to show:

(i) ρ(ΦF,P(I)) ≤
(

1
2

)n+1,

(ii) ρ(ΦF,P(J)) ≤
(

1
2

)n+1,

(iii) d2(ΦF,P(I),ΦF,P(J)) ≤
(

1
2

)n+1

The argument for (ii) will be the same as the argument for (i). Hence we will
investigate the cases (i) and (iii):

(i) To prove ρ(ΦF,P(I)) ≤
(

1
2

)n+1, it is necessary to show that ΦF,P(I) cor-
rectly asserts A for each ground atom A /∈ Neg∗P with l2(A) ≤ n. Suppose,
to the contrary, that there is a ground atom A with l2(A) ≤ n such that
ΦF,P(I)(A) = >3 but M>2 (A) = ⊥2. We will derive a contradiction.
ΦF,P(I)(A) = >3 if and only if there exists a clause A ← B1, . . . , Bm ∈
ground(P) such that I(Bi) = >3 for all i with 1 ≤ i ≤ m. Since M>2 is a
model of P and M(A) = ⊥2, there exists a k with 1 ≤ k ≤ m such that
M>2 (B1∧. . .∧Bk−1) = >2 but M>2 (Bk) = ⊥2. Note that l(Bk) < l(A) ≤ n
by the acceptability of P w.r.t. M>2 . There are 2 cases to consider:

(a) If Bk ∈ Neg∗P , then since d1(I,M) ≤
(

1
2

)n, I and M agree on ground
literals in Neg∗P of level < n. Hence I(Bk) = M(Bk) = >3 and by
Prop. 4.7(1) we obtain M>2 (Bk) = >2. But this contradicts the fact
that M>2 (Bk) = ⊥2.

(b) If Bk /∈ Neg∗P , then Bk must be a positive literal. Since ρ(I) ≤(
1
2

)n, I must correctly assert each ground atom not in Neg∗P whose
level is less than n; in particular, I correctly asserts Bk. But this is
impossible since I(Bk) = >3 but M>2 (Bk) = ⊥2.

(iii) We must show for each ground atom A /∈ Neg∗P with l2(A) ≤ n that
ΦF,P(I)(A) = ΦF,P(J)(A) 6= u. If ΦF,P(I)(A) = ΦF,P(J)(A) = ⊥3,
then the condition is satisfied. So let’s assume, without loss of generality,
that ΦF,P(I)(A) 6= ⊥3. Then there is some clause A ← B1, . . . , Bm in
ground(P) such that I(Bi) 6= ⊥3 for all i with 1 ≤ i ≤ m. We will now
consider two cases:

(a) If M>2 (B1 ∧ · · · ∧ Bm) = >2, then since P is acceptable w.r.t. M>2 ,
we obtain

l(Bi) < l(A) ≤ n

for every i with 1 ≤ i ≤ m. Take some j with 1 ≤ j ≤ m. Two cases
can occur:

i. If Bj ∈ Neg∗P , then from d1(I,M) ≤
(

1
2

)n and d1(J,M) ≤
(

1
2

)n
and l(Bj) < n we obtain I(Bj) = J(Bj) = M(Bj) = >3.
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ii. If Bj /∈ Neg∗P , then from d2(I, J) ≤
(

1
2

)n we obtain I(Bj) =
J(Bj) 6= u. Further, since I(Bj) 6= ⊥3, it must be the case that
I(Bj) = J(Bj) = >3.

In both cases we have I(Bj) = J(Bj) = >3 and since the choice of j
was arbitrary, we can conclude that I(B1 ∧ · · · ∧Bm) = J(B1 ∧ · · · ∧
Bm) = >3. Consequently,

ΦF,P(I)(A) = ΦF,P(J)(A) = >3

and we are done.

(b) If M>2 (B1 ∧ · · · ∧Bm) = ⊥2, then we can find the least index k with
1 ≤ k ≤ m such that M>2 (Bk) = ⊥2. Hence also M(Bk) = ⊥3 and
since P is acceptable w.r.t. M>2 , we obtain l(Bk) < l(A). We will
derive a conflict, considering two cases:

i. If Bk ∈ Neg∗P , then we arrive at a conflict with d1(I,M) ≤
(

1
2

)n
because I(Bk) 6= ⊥3 while M(Bk) = ⊥3.

ii. If Bk /∈ Neg∗P , then from d2(I, J) ≤
(

1
2

)n we obtain I(Bk) 6=
u. From the assumption we further obtain I(Bk) 6= ⊥3, so the
only possibility that remains is I(Bk) = >3. However, this is in
conflict with ρ(I) ≤

(
1
2

)n because M(Bk) 6= >2.

To summarize, given an acceptable program P, we found a mapping d3

that is a metric on the space of all three-valued interpretations. Moreover, we
showed that this space is a complete metric space. We also proved that the
Fitting operator ΦF,P is a contraction in this space, so by applying the Banach
Contraction Theorem we can conclude it has a unique fixed point that can
be computed by iterating ΦF,P up to ω times starting from any three-valued
interpretation.

Corollary 4.27. Let P be an acceptable logic program. Then ΦF,P has a
unique fixed point that can be reached by iterating it up to ω times starting
from any interpretation.

Proof. Follows by Propositions 4.23 and 4.25 and Theorems 4.26 and 4.4.

Example 4.28. Consider the following program:

P2 : p← r, q.

q ← r, p.

Let l(p) = l(q) = 1, l(r) = 0 and M>2 = ∅. We can see that l(p) > l(r) and
l(q) > l(r). Hence, P2 is acceptable with respect to the level mapping l and the
model M>2 . In the following we demonstrate how iterating the operator from
any interpretation always yields its unique fixed point.

First consider the interpretation I0 = 〈{ q, r } , { p }〉. By iterating the Fitting
operator starting from I0 we obtain the following results:

I1 = ΦF,P2(I0) = 〈{ p } , { q, r }〉
I2 = ΦF,P2(I1) = 〈∅, { p, q, r }〉 = ΦF,P2(I2)
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If instead we choose the interpretation I ′0 = 〈{ p } , ∅〉, then the results are as
follows:

I ′1 = ΦF,P2(I ′0) = 〈∅, { r }〉
I ′2 = ΦF,P2(I ′1) = 〈∅, { p, q, r }〉 = I2 = ΦF,P2(I2)

We can see that by the previous result, I2 = I ′2 is the unique fixed point of
ΦF,P2 .

4.4 Stenning and van Lambalgen Operator

Let us first recall the definition of Stenning and van Lambalgen Operator.
Let I be an interpretation and P be an extended program. The Sten-

ning and van Lambalgen immediate consequence operator is defined as follows:
ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥}

Even though the difference between the Fitting operator and the Stenning
and van Lambalgen operator is only subtle on the first glance, the Stenning
and van Lambalgen operator does not always have a unique fixed point for an
acceptable program. Here is a counterexample:

Example 4.29. Consider the acceptable program from Example 4.28:

P2 : p← r, q.

q ← r, p.

Now let I1 = 〈∅, ∅〉 and I2 = 〈∅, { p, q }〉. We find ΦSvL,P2(I1) = I1 and
ΦSvL,P2(I2) = I2, so I1 and I2 are two fixed points of ΦSvL,P2 . Consequently,
ΦSvL,P2 cannot be a contraction because from Banach Contraction Theorem it
follows that a contraction always has a unique fixed point.

We can see that the problem in P2 is the cycle between p and q. Indeed, it
turns out that for the smaller class of acyclic programs, the Stenning and van
Lambalgen operator always has a unique fixed point. To prove this result, we
first need to show that the space of three-valued interpretations with a metric
induced by some (total) level mapping always forms a complete metric space.
Then we will prove that for any program P that is acyclic with respect to some
level mapping l, ΦSvL,P is a contraction with respect to the metric induced
by l. This will allow us to use the Banach Contraction Theorem to conclude
that ΦSvL,P has a unique fixed point that can be computed by iterating ΦSvL,P
starting from any three-valued interpretation.

Let’s start by showing that the space of three-valued interpretations using a
metric induced by some level mapping is a complete metric space.

Proposition 4.30. The space of three-valued interpretations using a metric dl
induced by some level mapping l is a complete metric space.
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Proof. Suppose {Sk}∞k=1 is a Cauchy sequence of interpretations. Then for any
n ∈ N there must be some K ∈ N such that for any k1, k2 ≥ K we have

dl(Sk1 , Sk2) ≤
(

1
2

)n+1

Let Kn be the least such K for every n ∈ N. This definition implies

Kn1 ≤ Kn2 for any n1, n2 ∈ N with n1 ≤ n2.

Let us define our limit interpretation S for any atom A as S(A) = SKl
(A)

where l(A) = l.
We now need to prove that for any ε > 0 there is some K ∈ N such that for

any k ≥ K we have dl(S, Sk) ≤ ε. Choose some ε > 0 and let n ∈ N be such
that

(
1
2

)n+1 ≤ ε. We will prove dl(S, Sk) ≤
(

1
2

)n+1 for any k ≥ Kn from which
the claim will follow.

Take some atom A with l(A) = l ≤ n. Then Kl ≤ Kn and hence by the
definition of Kl we have dl(SKl

, SKn
) ≤

(
1
2

)l+1. Consequently, by the definition
of dl we have S(A) = SKl

(A) = SKn
(A). Further, for any k ≥ Kn we have

dl(SKn
, Sk) ≤

(
1
2

)n+1, so we obtain S(A) = SKn
(A) = Sk(A) and therefore also

dl(S, Sk) ≤
(

1
2

)n+1

.

We can now turn to the main result, i.e. that for any acyclic program P,
ΦSvL,P is a contraction relative to the metric induced by the level mapping with
respect to which P is acyclic.

Theorem 4.31. Let P be an acyclic logic program with respect to the level
mapping l. Then ΦSvL,P is a contraction relative to the metric dl induced by
the level mapping l.

Proof. We will show

dl(ΦSvL,P(I),ΦSvL,P(J)) ≤ 1
2
· dl(I, J) .

If I = J , then ΦSvL,P(I) = ΦSvL,P(J), so dl(ΦSvL,P(I),ΦSvL,P(J)) =
dl(I, J) = 0 and we are finished.

If I 6= J , then since l is total, we obtain dl(I, J) =
(

1
2

)n for some n ∈ N.
We will show that dl(ΦSvL,P(I),ΦSvL,P(J)) ≤

(
1
2

)n+1, i.e. that for all ground
atoms A ∈ ground(P) with l(A) ≤ n we have ΦSvL,P(I)(A) = ΦSvL,P(J)(A).

Let’s take some A with l(A) ≤ n and let CA be the set of all clauses in
ground(P) with A in the head. Since P is acyclic, for any clause A← B1, . . . , Bm
from CA we obtain that for all 1 ≤ i ≤ m

l(Bi) < l(A) ≤ n .

We know that dl(I, J) ≤
(

1
2

)n, so I(Bi) = J(Bi) for all 1 ≤ i ≤ m. Therefore,
since the choice of the clause was arbitrary, I and J interpret identically all bod-
ies of clauses with A in the head. Consequently, ΦSvL,P(I)(A) = ΦSvL,P(J)(A)
as desired.
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To summarize, although the Stenning and van Lambalgen operator of an
acceptable program may not be a contraction and may even have multiple fixed
points, for the smaller class of acyclic programs it is guaranteed to be a contrac-
tion. Similarly as for the Fitting operator, by the Banach Contraction Theorem
it then has a unique fixed point that can be computed by iterating the operator
up to ω times starting from any three-valued interpretation.

Corollary 4.32. Let P be an acyclic logic program. Then ΦSvL,P has a unique
fixed point that can be reached by iterating it up to ω times starting from any
interpretation.

Proof. Follows by Propositions 4.13 and 4.30 and Theorems 4.31 and 4.4.

Example 4.33. Consider the following program:

P3 : p← q, r.

q ← ¬r.
r ← >.

Let l(p) = 2, l(q) = 1 and l(r) = 0. We can see that l(p) > l(q), l(p) > l(r),
l(q) > l(r). Hence, P3 is acyclic with respect to the level mapping l. In the
following, we demonstrate how iterating the operator from any interpretation
always yields its unique fixed point.

First consider the interpretation I0 = 〈{ q, r } , { p }〉. By iterating the Sten-
ning and van Lambalgen operator starting from I0 we obtain the following
results:

I1 = ΦSvL,P3(I0) = 〈{ p, r } , { q }〉
I2 = ΦSvL,P3(I1) = 〈{ r } , { p, q }〉 = ΦSvL,P3(I2)

If instead we choose the interpretation I ′0 = 〈{ p } , ∅〉, then the results are as
follows:

I ′1 = ΦSvL,P3(I ′0) = 〈{ r } , ∅〉
I ′2 = ΦSvL,P3(I ′1) = 〈{ r } , { q }〉
I ′3 = ΦSvL,P3(I ′2) = 〈{ r } , { p, q }〉 = I2 = ΦSvL,P3(I2)

We can see that by the previous result, I2 = I ′3 is the unique fixed point of
ΦSvL,P3 .

4.5 Discussion

We showed that for any acceptable program the Fitting operator is a contraction.
By the Banach Contraction Theorem this implies that it has a unique fixed point
and this fixed point can be reached by iterating the operator at most ω times
starting from any three-valued interpretation.

In [AP93], the authors also proved, without using metric methods, that for
any acceptable program the Fitting operator has a unique fixed point. They
also showed that this fixed point is a total interpretation whose positive part
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coincides with the unique fixed point of the two-valued TP operator (see Corol-
lary 6.9 on p. 33 in [AP93]). Further, since every stable model [GL88] is a
fixed point of ΦF,P , the fixed point is also a unique stable (and well-founded
[GRS91]) model.

By contrast, we showed that the Stenning and van Lambalgen operator need
not be a contraction for any acceptable program and may also have multiple
fixed points. Then we proved that for the smaller class of acyclic programs, the
Stenning and van Lambalgen operator is guaranteed to be a contraction and
hence by Banach Contraction Theorem has a unique fixed point. However, it
should be noted that this fixed point still need not be total, as is shown in the
following example:

Example 4.34. Consider the following program:

P3 : p← q.

P3 is acyclic with respect to the level mapping l(p) = 1, l(q) = 0 and its unique
fixed point is I = 〈∅, ∅〉.
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Chapter 5

Three-Valued Semantics for
Logic Programs

In recent years, the Fitting semantics for logic programs has not been used
much. It has been overtaken in interest by the well-founded semantics [GRS91]
and stable model semantics [GL88]. The latter extends the former in a well-
understood manner, and provides a two-valued semantics for logic programs.
Both capture transitive closure and other recursive rule behaviour and, thus,
are useful for programming. However, there are trade-offs between the Fitting
semantics and well-founded semantics. The ability of well-founded semantics to
capture properties like graph reachability means that it cannot be modelled by
a finite first-order theory such as completion. Well-founded semantics also has
a higher complexity than the Fitting semantics. The relationship of the Fitting
semantics and the well-founded semantics is brought forward in [HW02] using
level mappings. Hence, in this chapter we show the relationship of Stenning
and van Lambalgen semantics based on its immediate consequence operator
with Fitting semantics and well-founded semantics.

We will be using a more general notion of a level mapping in this chapter:

Definition 5.1 (Level Mapping). Let I =
〈
I>, I⊥

〉
be an interpretation and

P a logic program. An I-partial level mapping for P is a partial mapping
l : BP → α where the domain dom(l) = I> ∪ I⊥ and α is a countable ordinal.
We extend the definition of level mapping to literals by setting l(¬A) = l(A).
A total level mapping is a total mapping l : BP → α for some countable ordinal
α.

5.1 Stenning and van Lambalgen Semantics

Let us now recall the definition of the Stenning and van Lambalgen operator.
Let I be an interpretation and P be an extended program. The Sten-

ning and van Lambalgen immediate consequence operator is defined as follows:
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ΦSvL,P(I) =
〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥}

The operator ΦSvL,P is monotonic (Proposition 3.21) and so by Proposition
3.11 it has a least fixed point that is characterized by transfinite induction –
iterating ΦSvL,P starting from the empty interpretation must eventually yield
a fixed point.

More formally, let M be the least fixed point of ΦSvL,P and let

M0 = 〈∅, ∅〉
Mα = ΦSvL,P(Mα−1) for every non-limit ordinal α > 0

Mα =
⋃
β<α

Mβ for every limit ordinal α

Then for some ordinal γ it holds that M = Mγ . The Stenning and van Lam-
balgen (SvL) semantics for logic programs is given by this least fixed point:

Definition 5.2 (Stenning and van Lambalgen Model). The least fixed point of
ΦSvL,P is called the Stenning and van Lambalgen (SvL) model of P.

Now we give a characterization of the Stenning and van Lambalgen semantics
using level mappings.

Definition 5.3. Let P be a logic program, I =
〈
I>, I⊥

〉
be a model of P and

l be an I-partial level mapping for P. P satisfies (SvL) with respect to I and l
if for every A ∈ dom(l) one of the following conditions is satisfied:

SvLi A ∈ I> and there exists a clause A← B1, . . . , Bm in ground(P) such that
I(Bi) = > and l(A) > l(Bi) for all i.

SvLii A ∈ I⊥ and there exists a clause A ← B1, . . . , Bm in ground(P) and for
each such clause there exists an i with I(Bi) = ⊥ and l(A) > l(Bi).

If A ∈ dom(l) satisfies (SvLi), then we say that A satisfies (SvLi) with respect
to I and l, and similarly if A ∈ dom(l) satisfies (SvLii).

Theorem 5.4. Let P be a logic program with the SvL model M . Then M is
the greatest model among all models I for which there exists an I-partial level
mapping l for P such that P satisfies (SvL) with respect to I and l.

Proof. Let M =
〈
M>,M⊥

〉
be the SvL model of P and let Mα be defined as

above (where α is an ordinal).
We define the M -partial level mapping lM as follows: lM (A) = α, where

α is the least ordinal such that A is not undefined in Mα. The proof will be
established by showing the following facts: (1) P satisfies (SvL) with respect to
M and lM . (2) If I is a model of P and lI an I-partial level mapping such that
P satisfies (SvL) with respect to I and lI , then I ⊆M .

1. Let A ∈ dom(lM ) and lM (A) = α. Now we consider two cases:

40



Three-Valued Semantics for Logic Programs 5.2 Fitting and Well-Founded Semantics

(a) If A ∈ M>, then A ∈ M>α , hence there exists a clause A ←
B1, . . . , Bm in ground(P) such that Mα−1(B1, . . . , Bm) = >. Thus,
for all Bi we have that Mα−1(Bi) = > and hence lM (Bi) < α and
M(Bi) = > for all i. Consequently, A satisfies (SvLi) with respect
to M and lM .

(b) If A ∈ M⊥, then A ∈ M⊥α , hence there exists a clause A ←
B1, . . . , Bm in ground(P) and for all such clauses there exists a Bi
with Mα−1(Bi) = ⊥. So lM (Bi) < α and M(Bi) = ⊥. Consequently,
A satisfies (SvLii) with respect to M and lM , and we have established
that fact (1) holds.

2. We show via transfinite induction on α = lI(A) that whenever A ∈ I>

(respectively, A ∈ I⊥), then A ∈M> (respectively, A ∈M⊥).

1◦ If lI(A) = 0, then A ∈ I> implies that A occurs as the head of a
fact in ground(P), hence A ∈M>1 ⊆M>. There cannot be an atom
A ∈ I⊥ with lI(A) = 0 because then for some literal B we would
have lI(B) < 0 which is a contradiction.

2◦ Assume now that the induction hypothesis holds for all B ∈ BP with
lI(B) < α. We consider two cases:

i. If A ∈ I>, then it satisfies (SvLi) with respect to I and lI .
Hence there is a clause A ← B1, . . . , Bm in ground(P) such
that I(B1, . . . , Bm) = > and lI(Bi) < α for all i. Hence
M(B1, . . . , Bm) = > by inductive hypothesis, and since M is a
model of P, we obtain A ∈M>.

ii. If A ∈ I⊥, then it satisfies (SvLii) with respect to I and lI . Hence
there is a clause A ← B1, . . . , Bm in ground(P) and for all such
clauses there exists an i with I(Bi) = ⊥ and lI(A) > lI(Bi).
Hence for all these Bi, M(Bi) = ⊥ by induction hypothesis and
consequently for all clauses A ← B1, . . . , Bm in ground(P) we
get M(B1, . . . , Bm) = ⊥. Because M is a fixed point of ΦSvL,P ,
we find that A ∈ M⊥. This establishes fact (2) and concludes
the proof.

Corollary 5.5. A logic program P has a total SvL model if and only if there
is a total model I of P and a (total) level mapping l for P such that P satisfies
(SvL) with respect to I and l.

5.2 Fitting and Well-Founded Semantics

Let us recall back the definition of Fitting operator from [Fit85].
Let I be an interpretation and P a program. The Fitting immediate conse-

quence operator is defined as follows: ΦF,P(I) =
〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥ } .

The operator ΦF,P is monotonic [Fit85] and so we can compute its least fixed
point by iterating ΦF,P starting from the empty interpretation. Similarly as in
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the case of the Stenning and van Lambalgen semantics, the Fitting semantics
for logic programs is given by this least fixed point:

Definition 5.6 (Fitting Model). The least fixed point of ΦF,P is called Fitting
model of P.

A level mapping characterization of the Fitting semantics, similar to the one
for SvL semantics above, has been given in [HW02]:

Definition 5.7. Let P be a logic program, I =
〈
I>, I⊥

〉
be a model of P and

l be an I-partial level mapping for P. P satisfies Fitting (F) with respect to I
and l if for every A ∈ dom(l) one of the following conditions is satisfied:

Fi A ∈ I> and there exists a clause A← B1, . . . , Bm in ground(P) such that
I(Bi) = > and l(A) > l(Bi) for all i.

Fii A ∈ I⊥ and for each clause A← B1, . . . , Bm in ground(P) there exists an
i with I(Bi) = ⊥ and l(A) > l(Bi).

Notice that the condition (Fi) is exactly same as the condition (SvLi) and the
condition (Fii) is strictly weaker than the condition (SvLii).

Theorem 5.8. Let P be a logic program with the Fitting model M . Then M is
the greatest model among all models I for which there exists an I-partial level
mapping l for P such that P satisfies (F) with respect to I and l.

Proof. See [HW02].

Corollary 5.9. A logic program P has a total Fitting model if and only if there
is a total model I of P and a (total) level mapping l for P such that P satisfies
(Fitting) with respect to I and l.

Corollary 5.10. Let P be a logic program with SvL model MSvL and Fitting
model MF . Then MSvL ⊆MF .

Proof. Follows from Theorems 5.4 and 5.8 and the fact that the condition (Fi)
is exactly same as the condition (SvLi) and the condition (Fii) is strictly weaker
than the condition (SvLii).

Hitzler and Wendt in [HW02] also gave a level mapping characterization of
the well-founded semantics as follows:

Definition 5.11. Let P be a logic program, I =
〈
I>, I⊥

〉
be a model of P and

l be an I-partial level mapping for P. P satisfies (WF) with respect to I and l
if for every A ∈ dom(l) one of the following conditions is satisfied:

WFi A ∈ I> and there exists a clause A← B1, . . . , Bm in ground(P) such that
I(Bi) = > and l(A) > l(Bi) for all i.

WFii A ∈ I⊥ and for each clause A← A1, . . . , An,¬B1, . . . ,¬Bm in ground(P),
at least one of the following conditions holds:

WFiia there exists i with 1 ≤ i ≤ n, Ai ∈ I⊥ and l(A) ≥ l(Ai),
WFiib there exists j with 1 ≤ j ≤ m, Bj ∈ I> and l(A) > l(Bj).

42



Three-Valued Semantics for Logic Programs 5.3 Discussion

Theorem 5.12. Let P be a logic program with the well-founded model M .
Then M is the greatest model among all models I for which there exists an
I-partial level mapping l for P such that P satisfies (WF) with respect to I and
l.

Proof. See [HW02].

Corollary 5.13. Let P be a logic program with F model MF , well-founded
model MWF . Then MF ⊆MWF .

Proof. See [HW02].

Corollary 5.14. Let P be a logic program with SvL model MSvL, F model
MF , well-founded model MWF . Then MSvL ⊆MF ⊆MWF .

Proof. Follow immediately from Corollary 5.10 and Corollary 5.13.

5.3 Discussion

In [HW02], Hitlzler and Wendt gave a new characterizations of the Fitting
semantics and the well-founded semantics using level mappings and we just
gave a similar characterization for SvL semantics based on Stenning and van
Lambalgen operator [SvL08]. The result shows that compared to the Fitting
and well-founded model, the Stenning and van Lambalgen model is always the
smallest. This means that the SvL semantics is more sceptical since the SvL
model makes potentially more atoms undefined than the other semantics and
hence, allows to conclude less from the same program.
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Chapter 6

Consequence Operators
under  Lukasiewicz
Semantics

In this chapter we discuss Fitting operator [Fit85] and Stenning van Lambalgen
operator [SvL08] under the  Lukasiewicz semantics [ Luk20]. First we introduce
the  Lukasiewicz, Kleene and Fitting three-valued logics and then we show that
replacing the Fitting semantics by the  Lukasiewicz semantics does not change
the behavior of the operators. Moreover, in difference to the Fitting semantics,
the model intersection property holds under the  Lukasiewicz semantics and in
addition the fixed points of the Fitting and the Stenning and van Lambalgen
operators are models of the program itself.

6.1 Three-Valued Logics

In this section, we introduce three different three-valued logics, namely the
 Lukasiewicz three-valued logic [ Luk20], the Kleene strong three-valued logic
[Kle52] and the Fitting three-valued logic [Fit85] which was defined by Fitting
as a semantics for completed logic programs. We show the differences between
these three-valued logics.

In 1920, the Polish philosopher  Lukasiewicz introduced the first three-valued
logic [ Luk20]. In his logic, the truth values are not only true and false, but there
exists a third, intermediate value. A formula is allowed to be neither true nor
false. We can interpret the intermediate truth value as possibility: the truth
value is not decided yet but possibly decided at some later time. As before, we
symbolize truth- and falsehood by > and ⊥, respectively, and we call the third
truth value undecided and use the symbol u to denote it.

 Lukasiewicz used the following principles and definitions to assign values to
formulas, where ≡ denotes semantic equivalence:

1. The principles of identity and non-identity:
(⊥ ↔ L ⊥) ≡ (> ↔ L >) ≡ >, (> ↔ L ⊥) ≡ (⊥ ↔ L >) ≡ ⊥,
(⊥ ↔ L u) ≡ (u↔ L ⊥) ≡ (> ↔ L u) ≡ (u↔ L >) ≡ u, (u↔ L u) ≡ >.
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2. The principles of implication:
(⊥ ← L ⊥) ≡ (> ← L ⊥) ≡ (> ← L >) ≡ >, (⊥ ← L >) ≡ ⊥,
(u← L ⊥) ≡ (> ← L u) ≡ (u← L u) ≡ >, (⊥ ← L u) ≡ (u← L >) ≡ u.

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥ ← L A), A ∨B ≡ (B ← L (B ← L A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Later, in 1952, Kleene proposed an alternative three-valued logic with the
truth values true, false, and undefined [Kle52]. He distinguishes between weak
and strong three-valued logics.

For weak three-valued logics, Kleene uses the propositional connectives in
the weak sense. It means F ∨ G ≡ F ∧ G ≡ F ← G ≡ F ↔ G ≡ u when at
least one of the formulae F,G has the truth value undefined. The Kleene weak
three-valued is unsubtle and not interesting for us, so we will focus on Kleene
strong three-valued logic.

The Kleene strong three-valued logic is similar to the  Lukasiewicz logic, but
differs in the semantics of implication and equivalence between two undefined
formulae. More specifically, when the formulae F,G are both undefined, then
both the implication F ← G and the equivalence F ↔ G under  Lukasiewicz
logic have the truth value true whereas under Kleene strong three-valued logic
they are undefined.

In particular, Kleene’s strong three-valued logic is based on the follow-
ing principles and definitions, where we have underlined the differences to
 Lukasiewicz logic:

1. The principles of identity and non-identity:
(⊥ ↔K ⊥) ≡ (> ↔K >) ≡ >, (> ↔K ⊥) ≡ (⊥ ↔K >) ≡ ⊥,
(⊥ ↔K u) ≡ (u↔K ⊥) ≡ (> ↔K u) ≡ (u↔K >) ≡ (u↔K u) ≡ u

2. The principles of implication:
(⊥ ←K ⊥) ≡ (> ←K ⊥) ≡ (> ←K >) ≡ >, (⊥ ←K >) ≡ ⊥,
(u←K ⊥) ≡ (> ←K u) ≡ >, (⊥ ←K u) ≡ (u←K >) ≡ (u←K u) ≡ u

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥ ←K A), A ∨B ≡ (B ←K (B ←K A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Kleene also introduced a complete equivalence where (F ↔C G) ≡ > if and only
if both F and G have the same logical value, else (F ↔C G) ≡ ⊥.

We use I L, IK and IF to denote that an interpretation I uses the  Lukasiewicz
[ Luk20], Kleene [Kle52] or Fitting [Fit85] semantics, respectively.

The Deduction Theorem does not hold under  Lukasiewicz and Kleene se-
mantics. Before showing the counterexample, let us introduce the definitions
that are used in the Deduction Theorem.

Definition 6.1 (Model Relation). Let I be an interpretation and ψ be an
arbitrary formula. We say I is a model of ψ, denoted by I |= ψ, if and only if
I(ψ) = >. We write |= ψ if and only if I |= ψ for all interpretations I.

Definition 6.2 (Semantic Consequence). Let Φ be a set of formulae and ψ be
a formula. We say ψ is a semantic consequence of Φ, denoted by Φ |= ψ, if every
model of Φ is also a model of ψ.
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¬
> ⊥
⊥ >
u u

∧ ∨ ←K ← L ↔K ↔ L ↔C

> > > > > > > > >
> ⊥ ⊥ > > > ⊥ ⊥ ⊥
> u u > > > u u ⊥
⊥ > ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ > > > > >
⊥ u ⊥ u u u u u ⊥
u > u > u u u u ⊥
u ⊥ ⊥ u > > u u ⊥
u u u u u > u > >

Table 6.1: A truth table for three-valued logics. The indices K and  L refer
to Kleene and  Lukasiewicz logic, respectively, and ↔C denotes the complete
equivalence used by Fitting.

Definition 6.3 (Deduction Theorem). A logic satisfies the Deduction Theorem
if for any finite set of formulae Φ = {φ1, φ2, . . . , φn } and any formula ψ the
following holds:

Φ |= ψ if and only if |= (φ1 ∧ φ2 ∧ · · · ∧ φn)→ ψ .

Proposition 6.4. The deduction theorem is not satisfied under the  Lukasiewicz
and Kleene strong three-valued logics.

Proof. Suppose Φ = { a, a→ b } and ψ = b. Then under  Lukasiewicz and
Kleene strong three-valued logics, ψ is a semantic consequence of Φ, i.e. Φ |= ψ.
However, it does not hold under any of these logics that

|= (a ∧ (a→ b))→ b

because for the interpretation I defined as I(a) = u, I(b) = ⊥ we have

IK((a ∧ (a→ b))→ b) = I L((a ∧ (a→ b))→ b) = u .

The semantics of the connectives are summarized in Table 6.1. In
 Lukasiewicz logic [ Luk20], the set of connectives is {¬, ∧, ∨, ← L, ↔ L }, in
Kleene three-valued logic [Kle52] the set of connectives is {¬, ∧, ∨, ←K , ↔K }.
Fitting in [Fit85] proposed Kleene strong three-valued logic for logic program-
ming and complete equivalence for the program completion, so in Fitting logic
[Fit85] the set of connectives is {¬, ∧, ∨, ←K , ↔C }. Later, Stenning and
van Lambalgen used Fitting logic to model human reasoning [SvL08].

Table 6.2 gives an overview of validity of some common logical laws with
respect to the  Lukasiewicz, Kleene and Fitting logics.
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Laws  Lukasiewicz Kleene Fitting
Idempotency

Yes Yes YesF ∧ F ≡ F
F ∨ F ≡ F
Commutativity

Yes Yes YesF ∧G ≡ G ∧ F
F ∨G ≡ G ∨ F
Associativity

Yes Yes Yes(F ∧G) ∧H ≡ F ∧ (G ∧H)
(F ∨G) ∨H ≡ F ∨ (G ∨H)
Absorption

Yes Yes Yes(F ∧G) ∨ F ≡ F
(F ∨G) ∧ F ≡ F
Distributivity

Yes Yes YesF ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H)
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H)
Double Negation Yes Yes Yes¬¬F ≡ F
de Morgan

Yes Yes Yes¬(F ∧G) ≡ (¬F ∨ ¬G)
¬(F ∨G) ≡ (¬F ∧ ¬G)
Equivalence Yes Yes No
F ↔ G ≡ (F → G) ∧ (G→ F )
Implication No Yes Yes
F ← G ≡ F ∨ ¬G
Contraposition Yes Yes Yes
F ← G ≡ ¬G← ¬F
Syllogism No Yes Yes(F ← G) ∧ (G← H) ≡ F ← H
Excluded Middle No No No
F ∨ ¬F ≡ >
Contradiction No No No
F ∧ ¬F ≡ ⊥

Table 6.2: Some common logical laws under  Lukasiewicz, Kleene and Fitting
semantics.
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6.2 Fitting Operator

Let us recall the definition of Fitting operator. Let I be an interpretation and
P a program. The Fitting immediate consequence operator is defined as follows:
ΦF,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | for all A← Body ∈ ground(P) we find I(Body) = ⊥ } .

Please recall that the body of the program is a conjunction of literals and,
hence, I L(Body) = IK(Body) = IF (Body) according to Table 6.1.

Suppose we have two programs P1 and P2 and their completions:

P1 : p← q.

comp(P1) : p↔ q.

q ↔ ⊥.
P2 : p← q.

q ← p.

comp(P2) : p↔ q.

q ↔ p.

Since both programs are ground, from Proposition 3.25 we obtain that the
Fitting operators ΦF,P1 and ΦF,P2 are continuous and we obtain the least fixed
points lfp(ΦF,P1) = 〈∅, { p, q }〉 and lfp(ΦF,P2) = 〈∅, ∅〉. It is easy to verify that
the least fixed points are models of the completions under the Fitting semantics,
which is no coincidence as was formally proven in [Fit85]. This property holds
also under the  Lukasiewicz semantics.

Proposition 6.5. Let P be a program.

1. I L is a fixed point of ΦF,P iff I L a model of comp(P).

2. If I L = lfp(ΦF,P), then I L is the least model of comp(P).

Proof. To show the if-part of 1., suppose I L(comp(P)) = >. In this case we have
to show that I L =

〈
I>, I⊥

〉
is a fixed point of ΦF,P , i.e., ΦF,P(I L) = I L. Let

ΦF,P(I L) = J =
〈
J>, J⊥

〉
. Then J = I L if and only if J> = I> and J⊥ = I⊥.

We distinguish four cases:

1. Suppose A ∈ I>, i.e., I L(A) = >. Because I L(comp(P)) = > we find
A↔ Body1∨Body2∨· · · ∈ comp(P) such that I L(Body1∨Body2∨· · · ) = >.
Hence, there exists A← Bodyi ∈ ground(P), i ≥ 1, such that I L(Bodyi) =
>. Therefore, A ∈ J>.

2. Suppose A ∈ J>. By the definition of ΦF,P , we find A ← Bodyi ∈
ground(P), i ≥ 1, such that I L(Bodyi) = >. Hence, we find A ↔
Body1∨Body2∨· · · ∈ comp(P) and I L(Body1∨Body2∨· · · ) = >. Because
I L(comp(P)) = >, we find I L(A) = >. Hence, A ∈ I>.

3. Suppose A ∈ I⊥, i.e., I L(A) = ⊥. Because I L(comp(P)) = > we find
A ↔ F ∈ comp(P) such that I L(F ) = ⊥. In this case either F = ⊥ or
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F = Body1 ∨ Body2 ∨ · · · and for all i ≥ 1 we find I L(Bodyi) = ⊥. By
definition of ΦF,P we find A ∈ J⊥ in either case.

4. Suppose A ∈ J⊥. By the definition of ΦF,P we find for all A ← Bodyi ∈
ground(P), i ≥ 1, that I L(Bodyi) = ⊥. Hence, with F = ⊥ or F =
Body1 ∨ Body2 ∨ · · · we find I L(F ) = ⊥. Because I L(comp(P)) = > and
A↔ F ∈ comp(P), we conclude I L(A) = ⊥. Consequently, A ∈ I⊥.

To show the only-if-part of 1., suppose I L =
〈
I>, I⊥

〉
is a fixed point of

ΦF,P . In this case we have to show that I L(comp(P)) = >, i.e., for all formulae
A ↔ F ∈ comp(P) we have to show that I L(A) = I L(F ). We distinguish three
cases:

1. If I L(A) = >, then A ∈ I>. By the definition of ΦF,P , we find A ←
Bodyi ∈ ground(P ), i ≥ 1, such that I L(Bodyi) = >. Hence, F = (Body1∨
Body2 ∨ · · · ), I L(F ) = >, and the claim holds in this case.

2. If I L(A) = ⊥, then A ∈ I⊥. By the definition of ΦF,P we distinguish two
cases:

• If there is no clause A ← Body ∈ ground(P). Then, A ↔ ⊥ ∈
comp(P). Hence F = ⊥, I L(F ) = ⊥, and the claim holds in this
subcase.

• If for all clauses of the form A← Bodyi ∈ ground(P), i ≥ 1, we find
I L(Bodyi) = ⊥, then F = Body1 ∨ Body2 ∨ · · · , I L(F ) = ⊥, and the
claim holds in this subcase.

3. If I L(A) = u, then A /∈ I> ∪ I⊥. By the definition of ΦF,P , for all
A ← Bodyi ∈ ground(P), i ≥ 1, we find I L(Bodyi) 6= > and there exists
A ← Bodyi ∈ ground(P), i ≥ 1, such that I L(Bodyi) 6= ⊥. Hence, F =
Body1 ∨ Body2 ∨ · · · , I L(F ) = u, and the claim holds in the final case as
well.

To prove 2., suppose I L = lfp(ΦF,P) and I L is not the least model of comp(P).
Then we find an interpretation J L such that J L(comp(P)) = > and J L ⊂ I L.
By 1., J L will be a fixed point of ΦF,P , which contradicts the assumption that
I L is the least fixed point of ΦF,P .

A fixed point of the Fitting operator under the Fitting semantics is a model of
the completion of the program, but it is not necessarily a model of the program
itself. Consider again the program P2:

P2 : p← q.

q ← p.

We have lfp(ΦF,P2) = 〈∅, ∅〉 but it is not a model for P2. This is because under
Fitting semantics, if p and q are mapped to u, then both implications are mapped
to u as well. However, under the  Lukasiewicz semantics, if p and q are mapped
to u, then both implications are mapped to >. Hence, lfp(ΦF,P2) = 〈∅, ∅〉 is a
model for P2 under the  Lukasiewicz semantics.

Proposition 6.6. Let P be a program. If I L(comp(P)) = >, then I L(P) = >.
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Proof. If I L(comp(P)) = >, then for all A ↔ F ∈ comp(P) we find I L(A ↔
F ) = >. By the law of equivalence we conclude I L((A ← F ) ∧ (F ← A)) = >
and, consequently, I L(A← F ) = >. If F = ⊥ then ground(P) does not contain
a clause with head A. Otherwise, F = Body1 ∨ Body2 ∨ · · · and we distinguish
three cases:

1. If I L(A) = >, then we find I L(A ← Bodyi) = > for all A ← Bodyi ∈
ground(P ).

2. If I L(A) = ⊥, then for all i ≥ 1 we find I L(Bodyi) = ⊥ and, consequently,
I L(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If I L(A) = u then either I L(F ) = ⊥ or I L(F ) = u. The former possibility
being similar to case 2. we concentrate on the latter. If I L(F ) = u then for
at least one i we find I L(Bodyi) = u and for all i ≥ 1 either I L(Bodyi) = u
or I L(Bodyi) = ⊥. In any case, we find I L(A ← Bodyi) = > for all
A← Bodyi ∈ ground(P).

Corollary 6.7. Let P be a program. If I L is a fixed point of ΦF,P , then
I L(P) = >.

Proof. The corollary follows immediately from Propositions 6.5 and 6.6.

Although a fixed point of the Fitting operator is not always a model of the
given program under the Fitting semantics, the program itself may have models.
Returning to the example

P2 : p← q.

q ← p.

its minimal models under the Fitting semantics are 〈∅, { p, q }〉 and 〈{ p, q } , ∅〉.
Their intersection 〈∅, ∅〉 is, however, not a model of P2 under the Fitting seman-
tics. In other words, the model intersection property does not hold under the
Fitting semantics. On the other hand, under the  Lukasiewicz semantics, 〈∅, ∅〉
is a model for P2 and, as we will show in the following, the model intersection
property does in general hold under the  Lukasiewicz semantics.

Proposition 6.8. Let P be a program. If I L =
〈
I>, I⊥

〉
is a model of P, then

I ′ L =
〈
I>, ∅

〉
is also a model of P.

Proof. Let P be a program and suppose I L =
〈
I>, I⊥

〉
is a model of P. Let

A ← Body be a clause in ground(P). In order to show I ′ L(A ← Body) = > we
distinguish three cases:

1. If A ∈ I>, then I ′ L(A← Body) = >.

2. If A ∈ I⊥, then I L(A) = ⊥ and I ′ L(A) = u. Because I L(A ← Body) = >
we conclude that I L(Body) = ⊥. Hence, we find a literal C in Body with
I L(C) = ⊥. For each literal B occurring in Body we find:

(a) if B is an atom and B ∈ I>, then I L(B) = > and I ′ L(B) = >,

(b) if B is an atom and B ∈ I⊥, then I L(B) = ⊥ and I ′ L(B) = u,

(c) if B is an atom and B 6∈ I> ∪ I⊥, then I ′ L(B) = I L(B) = u,
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(d) if B is of the form ¬B′ and B′ ∈ I>, then I L(B) = ⊥ and I ′ L(B) = ⊥,

(e) if B is of the form ¬B′ and B′ ∈ I⊥, then I L(B) = > and I ′ L(B) = u,

(f) if B is of the from ¬B′ and B′ 6∈ I> ∪ I⊥, then I ′ L(B) = I L(B) = u,

Because C must belong to either case (b) or (d) and, hence, I ′ L(C) is
either u or ⊥, we conclude that I ′ L(Body) is either ⊥ or u as well. Because
I ′ L(A) = u we conclude that I ′ L(A← Body) = >.

3. If A /∈ I> ∪ I⊥, then I L(A) = I ′ L(A) = u. Because I L(A← Body) = > we
distinguish two cases:

(a) If I L(Body) = ⊥, then we conclude as in case 2. that I ′ L(Body) is
either ⊥ or u and, consequently, I ′ L(A← Body) = >.

(b) If I L(Body) = u, then Body must contain a literal B with I L(B) = u.
In this case, I ′ L(B) = u as well and, consequently, I ′ L(Body) is either
⊥ or u. As in the previous subcase we conclude that I ′ L(A← Body) =
>.

As an example consider the program

P3 : p← q,¬r.

In the remainder of this paragraph all models are considered under the
 Lukasiewicz semantics. The interpretation 〈{ p, q } , { r }〉 is a model for P3, and
so is 〈{ p, q } , ∅〉. Similarly, the interpretation 〈{ p, r } , { q }〉 is a model for P3,
and so is 〈{ p, r } , ∅〉. Also, the interpretation 〈{ r } , { q }〉 is a model for P3,
and so is 〈{ r } , ∅〉. The least model of P3 is 〈∅, ∅〉.

Proposition 6.9. Let I L1 =
〈
I>1 , ∅

〉
and I L2 =

〈
I>2 , ∅

〉
be two models for a

program P. Then I L3 =
〈
I>1 ∩ I>2 , ∅

〉
is a model for P as well.

Proof. Suppose I L3 =
〈
I>3 , I

⊥
3

〉
=
〈
I>1 ∩ I>2 , ∅

〉
is not a model for P. Then we

find A← Body ∈ P such that I L3(A← Body) 6= >. According to Table 6.1, one
of the following cases must hold:

1. I L3(A) = ⊥ and I L3(Body) = >.

2. I L3(A) = ⊥ and I L3(Body) = u.

3. I L3(A) = u and I L3(Body) = >.

Because I⊥3 = ∅ we find I L3(A) 6= ⊥ and, consequently, cases 1. and 2. cannot
apply. Therefore, we turn our attention to case 3. If I L3(A) = u then there
must exist j ∈ { 1, 2 } such that I Lj(A) = u. Because I Lj is a model for P we
find I Lj(A ← Body) = > and, thus, I Lj(Body) is either u or ⊥. In this case,
Body 6= >. Let Body = B1 ∧ · · · ∧Bm with m ≥ 1.

Because I L3(Body) = > and I⊥3 = ∅, we find for all 1 ≤ i ≤ m that Bi
is an atom with I L3(Bi) = >. Hence, {B1, . . . , Bm } ⊆ I>3 and, consequently,
{B1, . . . , Bm } ⊆ I>j , which contradicts the assumption that I Lj(Body) is ei-
ther u or ⊥.
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Proposition 6.9 does not hold for arbitrary models of P. For instance, let

P4 : p← q1, r1.

p← q2, r2.

and I L1 = 〈∅, { p, q1, r2 }〉, I L2 = 〈∅, { p, q2, r1 }〉. We can easily show that I L1

and I L2 are models for P4. Their intersection 〈∅, { p }〉, however, is not a model
for P4.

Proposition 6.10. LetM L be the set of all models of a program P under the
 Lukasiewicz semantics. Then,

⋂
M L is a model for P as well.

Proof. The result follows immediately from Propositions 6.8 and 6.9.

The least model of P4 under the  Lukasiewicz semantics is 〈∅, ∅〉. Suppose
we have

P5 : p← >.
q ← p.

r ← q,¬s.

The least model of P5 under the  Lukasiewicz semantics is 〈{ p, q } , ∅〉. This
last example also exhibits that the least fixed point of the Fitting operator is
not necessarily the least model of the underlying program because lfp(ΦF,P4) =
〈{ p, q, r } , { s }〉.

6.3 Stenning and van Lambalgen Operator

Let us recall the definition of Stenning and van Lambalgen operator.
Let I be an interpretation and P be an extended program. The Sten-

ning and van Lambalgen immediate consequence operator is defined as follows:
ΦSvL,P(I) =

〈
J>, J⊥

〉
, where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥}

We proved in Proposition 3.21 that ΦSvL,P is monotonic for and so by Propo-
sition 3.11 that the least fixed point of ΦSvL,P can be computed by iterating
ΦSvL,P starting from empty interpretation. More formally, let I be the least
fixed point of ΦSvL,P and let

I0 = 〈∅, ∅〉 (6.1)
Iα = ΦSvL,P(Iα−1) for every non-limit ordinal α > 0 (6.2)

Iα =
⋃
β<α

Iβ for every limit ordinal α (6.3)

Then for some ordinal γ it holds that I = Iγ .
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Before discussing further properties of the new operator, we reconsider the
program P1 from the previous section:

P1 : p← q.

comp(P1) : p↔ q.

q ↔ ⊥.

ΦSvL,P admits a least fixed point for P1 and we obtain lfp(ΦSvL,P1) = 〈∅, ∅〉.
One should note that this result differs from lfp(ΦF,P1) = 〈∅, { p, q }〉.

Now consider

P ′1 : p← q.

q ← ⊥.
comp(P ′1) : p↔ q.

q ↔ ⊥.

Note that comp(P ′1) = comp(P1). Further, we find lfp(ΦSvL,P′1) = lfp(ΦF,P1) =
〈∅, {p, q}〉. Thus, by adding negative facts, Stenning and van Lambalgen op-
erator can simulate Fitting operator. But it is more liberal in that if there
is no clause with head A in the extended program, then its meaning remains
undefined.

Obviously, completion as defined in Section 2.13 is unsuitable for extended
programs P. Let us define a weak completion of P by omitting the second step
of program completion.

Definition 6.11 (Weak Program Completion). Let P be a logic program. Con-
sider the following transformation:

1. Replace all clauses in ground(P) with the same head (ground atom) A←
Body1, A← Body2, . . . by the single expression A← Body1 ∨Body2 ∨ · · · .

2. Replace all occurrences of ← by ↔.

The resulting set of formulae is called weak completion of P and is denoted
by wcomp(P). One should observe that in step 1 there may be infinitely many
clauses with the same head resulting in a countable disjunction. However, its
semantic behavior is unproblematic.

Returning to the previous examples, we find

wcomp(P1) : p↔ q.

wcomp(P ′1) : p↔ q.

q ↔ ⊥.

In the following we relate the Stenning and van Lambalgen operator and
weak completion under the  Lukasiewicz semantics.

Lemma 6.12. Let I L be the least fixed point of ΦSvL,P and J L be a model of
wcomp(P). Then for every atom A the following propositions hold:

If I L(A) = >, then J L(A) = > (6.4)
If I L(A) = ⊥, then J L(A) = ⊥ (6.5)
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Proof. Let I L be the least fixed point of ΦSvL,P . First we will prove by transfi-
nite induction that for every ordinal α and every atom A it holds that:

If Iα(A) = >, then J L(A) = >
If Iα(A) = ⊥, then J L(A) = ⊥

Once we show this, the claim will follow directly by Proposition 3.11 because it
implies there is an ordinal αP such that I L = IαP .

Back to the proof by induction. We will consider three cases, one base case
when the ordinal α = 0 and two inductive cases, one for non-limit ordinals and
the other for limit ordinals:

1◦ Let α = 0. Then by (6.1) we have Iα = 〈∅, ∅〉 and so there is no atom such
that Iα(A) = > or Iα(A) = ⊥ and the claim follows trivially.

2◦ Let α > 0 be a non-limit ordinal. By inductive hypothesis we have for
every atom B that:

If Iα−1(B) = >, then J L(B) = > (6.6)
If Iα−1(B) = ⊥, then J L(B) = ⊥ (6.7)

Moreover, by (6.2) we have Iα = ΦSvL,P(Iα−1). Let us consider the two
claims separately:

1. If Iα(A) = >, then according to the definition of ΦSvL,P there must
be some rule A ← Bodyi ∈ ground(P) such that Iα−1(Bodyi) = >.
Let

Bodyi = B1 ∧B2 ∧ · · · ∧Bk ∧ ¬Bk+1 ∧ ¬Bk+2 ∧ · · · ∧ ¬Bm

Then for each s with 1 ≤ s ≤ k we have Iα−1(Bs) = > and for
each t with k < t ≤ m we have Iα−1(Bt) = ⊥. Using the inductive
hypothesis (6.6) and (6.7) we get that for each s with 1 ≤ s ≤ k we
have J L(Bs) = > and for each t with k < t ≤ m we have J L(Bt) = ⊥.
Hence J L(Bodyi) = >. Furthermore, in wcomp(P) there will be a
formula of the form A ↔ F where F is a disjunction with Bodyi as
one of the disjuncts. So we have J L(F ) = > and also J L(A↔ F ) = >
because J L is a model of wcomp(P). This implies J L(A) = >.

2. If Iα(A) = ⊥, then according to the definition of ΦSvL,P all rules of
the form A← Bodyi ∈ ground(P) must have Iα−1(Bodyi) = ⊥. Pick
an arbitrary but fixed j and let

Bodyj = B1 ∧B2 ∧ · · · ∧Bk ∧ ¬Bk+1 ∧ ¬Bk+2 ∧ · · · ∧ ¬Bm

Then there are two cases to consider:

i. There is some s with 1 ≤ s ≤ k such that Iα−1(Bs) = ⊥. Then
by (6.7) we get J L(Bs) = ⊥ and hence J L(Bodyj) = ⊥.

ii. There is some t with k < t ≤ m such that Iα−1(Bt) = >. Then
by (6.6) we get J L(Bs) = > and hence J L(Bodyj) = ⊥.

In either case we have J L(Bodyj) = ⊥ and since j was arbitrarily
chosen, we can conclude that for every i we have J L(Bodyi) = ⊥.

54



Consequence Operators under  Lukasiewicz Semantics 6.3 SvL Operator

Furthermore, in wcomp(P) there is a formula of the form A ↔ F
where F is the disjunction Body1 ∨ Body2 ∨ · · · . So J L(F ) = ⊥ and
also J L(A ↔ F ) = > because J L is a model of wcomp(P). This
implies J L(A) = ⊥.

3◦ Let α be a limit ordinal. By inductive hypothesis we have for every atom
B and every ordinal β < α that:

If Iβ(B) = >, then J L(B) = > (6.8)
If Iβ(B) = ⊥, then J L(B) = ⊥ (6.9)

Moreover, by (6.3) we have Iα =
⋃
β<α Iβ . Let us consider the two claims

separately:

1. If Iα(A) = >, then there is some ordinal β < α such that Iβ(A) = >
and by the inductive hypothesis (6.8) we have J L(A) = >.

2. If Iα(A) = ⊥, then there is some ordinal β < α such that Iβ(A) = ⊥
and by the inductive hypothesis (6.9) we have J L(A) = ⊥.

Proposition 6.13. Let P be an extended program. If I L is the least fixed point
of ΦSvL,P , then I L is a minimal model of wcomp(P).

Proof. First we will show that I L is a model of wcomp(P). Let us pick an
arbitrary formula (A ↔ F ) ∈ wcomp(P). We want to show that I L(A ↔ F ) =
>. We will consider three cases according to the truth value of A in I L:

a) If I L(A) = >, then according to the definition of ΦSvL,P , there exists a
rule A← Bodyi ∈ ground(P) such that I L(Bodyi) = >. Since Bodyi is one
of the disjuncts of F , this implies I L(F ) = > and hence I L(A↔ F ) = >.

b) If I L(A) = ⊥, then according to the definition of ΦSvL,P , for every rule
A ← Bodyi ∈ ground(P) we have I L(Bodyi) = ⊥. So all disjuncts in F
are false in I L and therefore also I L(F ) = ⊥. Hence I L(A ↔ F ) = > as
desired.

c) If I L(A) = u, then according to the definition of ΦSvL,P there is no rule
A ← Bodyi ∈ ground(P) with I L(Bodyi) = > and there is some rule
A← Bodyj ∈ ground(P) with I L(Bodyj) 6= ⊥. So none of the disjuncts in
F is true, but it is also not the case that all of them are false. Therefore
I L(F ) = u and I L(A↔ F ) = >.

To prove that I L is a minimal model of wcomp(P), let I L =
〈
I>, I⊥

〉
. By

Lemma 6.12 we have that for any model J L =
〈
J>, J⊥

〉
of wcomp(P) it holds

that I> ⊆ J> and I⊥ ⊆ J⊥. Hence no proper subset of I L can be a model of
wcomp(P) and I L is a minimal model of wcomp(P).

Proposition 6.14. Let P be an extended program. If I L is a minimal model
of wcomp(P), then I L is the least fixed point of ΦSvL,P .

Proof. Let I L =
〈
I>, I⊥

〉
be a minimal model wcomp(P) and let J L =

〈
J>, J⊥

〉
be the least fixed point of ΦSvL,P . By Lemma 6.12 we know that J> ⊆ I> and
J⊥ ⊆ I⊥. Further, by Proposition 6.13 we have that J L is a minimal model of
wcomp(P). But then it must be the case that I L = J L because otherwise we
have a conflict with the minimality of I L.
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Corollary 6.15. For any extended program P, wcomp(P) has a least model.

Proof. Follows from Propositions 6.13 and 6.14 and the fact that the least fixed
point of ΦSvL,P is unique.

Corollary 6.16. Let P be an extended program. Then I L is the least fixed
point of ΦSvL,P iff I L is the least model of wcomp(P).

Proof. Follows from Propositions 6.13 and 6.14 and Corollary 6.15.

Proposition 6.17. Let P be an extended program. If I L is a model of
wcomp(P), then I L is a model of P.

Proof. Suppose I L is a model of wcomp(P). Then

I L(wcomp(P)) = > .

Hence, for all A ↔ F ∈ wcomp(P) we find I L(A ↔ F ) = >. By the law
of equivalence we conclude I L((A ← F ) ∧ (F ← A)) = > and, consequently,
I L(A← F ) = >. Let F = Body1 ∨ Body2 ∨ · · · . We distinguish three cases:

1. If I L(A) = >, then we find I L(A ← Bodyi) = > for all A ← Bodyi ∈
ground(P ).

2. If I L(A) = ⊥, then for all i ≥ 1 we find I L(Bodyi) = ⊥ and, consequently,
I L(A← Bodyi) = > for all A← Bodyi ∈ ground(P ).

3. If I L(A) = u, then either I L(F ) = ⊥ or I L(F ) = u. The former possibility
being similar to case 2. we concentrate on the latter. If I L(F ) = u then
we find a j with I L(Bodyj) = u and for all i ≥ 1 either I L(Bodyi) = u
or I L(Bodyi) = ⊥. In any case, we find I L(A ← Bodyi) = > for all
A← Bodyi ∈ ground(P).

From Proposition 6.13 and Proposition 6.17 we can derive Corollary 6.18 for
the Stenning and Lambalgen operator.

Corollary 6.18. Let P be an extended program. If I L is the least fixed point
of ΦSvL,P , then I L(P) = >.

Proof. The corollary follows immediately from Propositions 6.13 and 6.17.

Stenning and van Lambalgen say that the least fixed point of ΦSvL,P can be
shown to be the minimal model of ΦSvL,P in [SvL08] Lemma 4(1.). Contrary
to Lemma 4(1.) of [SvL08], this corollary does not hold under the Fitting
semantics. Reconsider

P1 : p← q.

comp(P1) : p↔ q.

q ↔ ⊥.

Then lfp(ΦSvL,P1) = 〈∅, ∅〉 and, thus, both p and q are mapped to u. Under this
interpretation P1 is mapped to u as well. One should also note that the least
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fixed point of the Stenning and van Lambalgen operator for a given program P is
not necessarily the least model of P under the Fitting semantics. Reconsidering

P ′1 : p← q.

q ← ⊥.

we find lfp(ΦSvL,P′1) = 〈∅, {p, q}〉 whereas the least model of P ′1 under the
 Lukasiewicz semantics is 〈∅, ∅〉.
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Chapter 7

Connectionist System for
the Stenning and van
Lambalgen Operator

Stenning and van Lambalgen argue that there is a relationship between the study
of neural networks and the study of brain functions. Basically the function of
brain can be modelled using neural networks. In this chapter, we show how to
model an algorithm for mapping the Stenning and van Lambalgen operator onto
a recurrent neural network with a feed-forward core. We show that the stable
state of the network is the least fixed point of the Stenning and van Lambalgen
operator. Later, we show how some human reasoning tasks can be adequately
modelled in the proposed logic and its connectionist realization.

7.1 The Core Method

In [HK94] a connectionist model generator for propositional logic programs using
recurrent networks with a feed-forward core was presented. It was later called
the core method [BH06]. The core method has been extended and applied to
a variety of programs including modal (see e.g. [dGZ99]) and first-order logic
programs [BHHW07]. It is based on the idea that feed-forward connectionist
networks can approximate almost all functions arbitrarily well [HSW89, Fun89]
and, hence, they can also approximate – and in some cases compute – the
immediate consequence operators associated with logic programs. Moreover, if
such an operator is a contraction mapping on a complete metric space, then the
Banach Contraction Theorem (Theorem 4.4) ensures that a unique fixed point
exists such that the sequence constructed from applying the operator iteratively
to any element of the metric space converges to the fixed point (Chapter 3).
Turning the feed-forward core into a recurrent network allows to compute or
approximate the least model of a logic program [HS99].

Kalinke has applied the core method to logic programs under the Fitting
semantics presented in Chapter 6 [Kal94]. In particular, her feed-forward cores
compute ΦF,P for any given program P. Seda and Lane showed that the core
method can be extended to many-valued logic programs [SL06]. Restricted to
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three-valued logic programs considered here, their cores also compute ΦF,P . In
the sequel, these approaches are modified in order to compute ΦSvL,P .

Given a program P, the following algorithm translates P into a feed-forward
core. Let m be the number of propositional atoms occurring in P. Without loss
of generality, we may assume that the atoms are denoted by natural numbers
from [1,m]. Let ω ∈ R+.

1. The input and output layer is a vector of binary threshold units of length
2m representing interpretations. The 2i− 1-st unit in the layers, denoted
by i>, is active iff the i-th atom is mapped to >. The 2i-th unit in the
layers, denoted by i⊥, is active iff the i-th atom is mapped to ⊥. Both,
the 2i − 1-st and the 2i-th unit, are passive iff the i-th atom is mapped
to u. The case where the 2i − 1-st and the 2i-th unit are active is not
allowed.

The threshold of each unit occurring in the input layer is set to 1
2 . The

threshold of each 2i − 1-st unit occurring in the output layer is set to ω
2 .

The threshold of each 2i-th unit occurring in the output layer is set to
max {ω2 , lω −

ω
2 }, where l is the number of clauses with head i in P.

In addition, two units representing > and ⊥ are added to the input layer.
The threshold of these units is set to − 1

2 .

2. For each clause of the form A ← B1, . . . , Bk occurring in P, do the fol-
lowing.

(a) Add two binary threshold units h> and h⊥ to the hidden layer.

(b) Connect h> to the unit A> in the output layer. Connect h⊥ to the
unit A⊥ in the output layer.

(c) For each Bj , 1 ≤ j ≤ k, do the following.

i. If Bj is an atom, then connect the units B>j and B⊥j in the input
layer to h> and h⊥, respectively.

ii. If Bj is the literal ¬B, then connect the units B⊥ and B> in the
input layer to h> and h⊥, respectively.

iii. If Bj is >, then connect the unit > in the input layer to h>.
iv. If Bj is ⊥, then connect the unit ⊥ in the input layer to h⊥.

(d) Set the threshold of h> to kω − ω
2 , and the threshold of h⊥ to ω

2 .

3. Set the weights associated with all connections to ω.

Proposition 7.1. For each program P, there exists a core of binary threshold
units computing ΦSvL,P .

Proof. Assume that the input layer is activated at time t such that it represents
an interpretation I. Then, at time t+1 an h>-unit representing A← B1, . . . , Bk
in the hidden layer becomes active iff all units representing B1, . . . , Bk in the
input layer are active, i.e., if I(B1) = . . . = I(Bk) = >. Likewise, at time t+ 1
an h⊥-unit representing A← B1, . . . , Bk in the hidden layer becomes active iff
one unit representing the negation of B1, . . . , Bk in the input layer is active, i.e.,
if I(¬B1)∨ · · · ∨ I(¬Bk) = >. At time t+ 2 a unit representing A in the output
later becomes active iff there is an active h>-unit representing A← B1, . . . , Bk
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Figure 7.1: The stable states of the feed-forward cores for P1 (left) and P2

(right), where all connections have weight ω, active units are shown in grey and
passive units in white. The recurrent connections between corresponding units
in the output and input layer are not shown.

at time t+ 1. Likewise, at time t+ 2 a unit representing ¬A in the output layer
becomes active iff all h⊥ units representing rules with head A are active at time
t+ 1. Thus, the core is a direct encoding of ΦSvL,P .

Given a program P and its core, a recurrent network can be constructed by
connecting each unit in the output layer to its corresponding unit in the input
layer with weight 1. In Figure 7.1 the construction is illustrated for the program
P1 and P2, where

P1 : p← q.

P2 : p← q.

q ← ⊥.

Proposition 7.2. For each program P, the corresponding recurrent network
initialized by the empty interpretation will converge to a stable state which
corresponds to the least fixed point of ΦSvL,P .

Proof. The result follows immediately from the construction of the recurrent
network using Corrolary 6.16 and Proposition 7.1.

7.2 Human Reasoning

In this section we will discuss some examples taken from [Byr89]. These ex-
amples were used by Byrne to show that classical logic cannot appropriately
model human reasoning. Stenning and van Lambalgen argue that a three-valued
logic programs under a completion semantics can model human reasoning well
[SvL08]. Moreover, as we will see, the core method presented in Section 7.1
serves as a connectionist model generator in these cases.
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Figure 7.2: The stable state of the feed-forward core for Pmarian1.

7.2.1 Human Reasoning – Modus Ponens

Consider the following sentences:

If Marian has an essay to write, she will study late in the library. (M1)
She has an essay to write. (M2a)

In [Byr89] 96% of all subjects conclude that Marian will study late in the library.
The two sentences can be represented by the program

Pmarian1 : l← e,¬ab.
e← >.
ab← ⊥.

The first sentence is interpreted as a licence for a conditional and the atom
ab is used to cover all additional preconditions that we may be unaware of.
As we know of no such preconditions, the rule ab ← ⊥ is added. The cor-
responding network as well as its stable state are shown in Figure 7.2. From
lfp(ΦSvL,Pmarian1) = 〈{l, e}, {ab}〉 follows that Marian will study late in the
library.

7.2.2 Human Reasoning – Denial of Antecedent (DA)

Suppose now that the antecedent is denied:

If Marian has an essay to write, she will study late in the library. (M1)
She does not have an essay to write. (M2b)

In [Byr89] 46% of subjects conclude that Marian will not study late in the
library. These subject err with respect to classical logic. But they do not err
with respect to the non-classical logic considered here. The two sentences can
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Figure 7.3: The stable state of feed-forward core for Pmarian2.

be represented by the program

Pmarian2 : l← e,¬ab.
e← ⊥.
ab← ⊥.

The corresponding network as well as its stable state are shown in Figure 7.3.
From lfp(ΦSvL,Pmarian2) = 〈∅, {ab, e, l}〉 follows that Marian will not study late
in the library.

7.2.3 Human Reasoning – Alternative Argument

Suppose now that we have an alternative argument:

If Marian has an essay to write, she will study late in the library. (M1)
She has an essay to write. (M2a)
If she has some textbooks to read, she will study late in the library. (M3)

In [Byr89] 96% of subjects conclude that Marian will study late in the library.
The sentences can be represented by the program

Pmarian3 : l← e,¬ab1.
e← >.

ab1 ← ⊥.
l← t,¬ab2.

ab2 ← ⊥.

The corresponding network as well as its stable state are shown in Figure 7.4.
From lfp(ΦSvL,Pmarian3) = 〈{e, l}, {ab1, ab2}〉. From 〈{e, l}, {ab1, ab2}〉 follows
that Marian will study late in the library. Thus, in this case, the alternative
argument does not give any obstacle to the fact that Marian will not study in
the library.
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Figure 7.4: The stable state of feed-forward core for Pmarian3.

7.2.4 Human Reasoning – Alternative Argument and DA

Now consider an alternative argument and the antecedent is denied:

If Marian has an essay to write, she will study late in the library. (M1)
She does not have an essay to write. (M2b)
If she has textbooks to read, she will study late in the library. (M3)

In [Byr89] 4% of subjects conclude that Marian will not study late in the library.
These sentences can be represented by

Pmarian4 : l← e,¬ab1.
e← ⊥.

ab1 ← ⊥.
l← t,¬ab2.

ab2 ← ⊥.

The corresponding network as well as its stable state are shown in Figure 7.5
From lfp(ΦSvL,Pmarian4) = 〈∅, {ab1, ab2, e}〉 follows that it is unknown whether
Marian will study late in the library. One should observe that lfp(ΦF,Pmarian4) =
〈∅, {ab1, ab2, e, t, l}〉 and, consequently, one would conclude that Marian will not
study late in the library. Thus, the Fitting operator leads to a wrong answer
with respect to human reasoning, whereas the Stenning and van Lambalgen
operator does not.

7.2.5 Human Reasoning – Additional Argument

Consider the presence of an additional argument:

If Marian has an essay to write, she will study late in the library. (M1)
She has an essay to write. (M2a)
If the library stays open, she will study late in the library. (M4)
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Figure 7.5: The stable state of feed-forward core for Pmarian4.
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Figure 7.6: The stable state of feed-forward core for Pmarian5.

In [Byr89] 38% of subjects conclude that Marian will study late in the library.
These sentences can be represented by

Pmarian5 : l← e,¬ab1.
e← >.
l← o,¬ab2.

ab1 ← ¬o.
ab2 ← ¬e.

As argued in [SvL08] the third sentence gives rise to an additional argument
for studying in the library, viz. that the library is open. Likewise, there must
be a reason for going to the library like, for example, writing an essay. The
corresponding network as well as its stable state are shown in Figure 7.6. From
lfp(ΦSvL,Pmarian5) = 〈{e}, {ab2}〉 it follows that it is unknown whether Marian
will study late in the library.
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Figure 7.7: The stable state of feed-forward core for Pmarian6.

7.2.6 Human Reasoning – Additional Argument and DA

As final example suppose the antecedent is denied and there is the present of
additional argument:

If Marian has an essay to write, she will study late in the library. (M1)
She does not have an essay to write. (M2b)
If the library is open, she will study late in the library. (M4)

In [Byr89] 63% of subjects conclude that Marian will not study late in the
library. These sentences can be represented by

Pmarian6 : l← e,¬ab1.
e← ⊥.
l← o,¬ab2.

ab1 ← ¬o.
ab2 ← ¬e.

The corresponding network as well as its stable state are shown in Figure 7.7.
From lfp(ΦSvL,Pmarian6) = 〈{ab2}, {e, l}〉 follows that Marian will not study late
in the library.
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Chapter 8

Negative Facts

There is a difficulty to express negative information as facts in logic programs.
In [SvL08] Stenning and van Lambalgen denote a negative fact as a clause of
the form A ← ⊥. However, their approach seems not well defined because the
semantics of their syntax does not reflect the intended meaning of a negative
fact. In this chapter we first discuss the problems with negative facts proposed
by Stenning and van Lambalgen. Next, we give some different approaches from
different points of view and we also discuss what problems would appear.

8.1 Stenning and van Lambalgen Negative Facts

Stenning and van Lambalgen in [SvL08] define negative information or a negative
fact as a clause in the form

A← ⊥. (8.1)

The name negative fact is considered only with respect to the (weak) com-
pletion of a program as, otherwise, a negative fact like A ← ⊥ is also mapped
to true by interpretations which map A to u or >.

The first problem with this notation is that when a program contains a clause
with the head A, then negative facts can be eliminated without changing the
semantics of the program. This is demonstrated in the following program:

P1 : a← >.
a← ⊥.

The result of lfp(ΦSvL,P1) is 〈{ a } , ∅〉. From the previous example we get that
a is true because there is a positive fact about a. Thus, in this program, the
negative fact about a does not influence the least fixed point.

The second problem is that truth has higher priority than falsity. We can see
in P1 that a is true, even though there is a negative fact about a. Moreover, the
undefined atoms also have higher priority than false atoms. Here is an example
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of this behaviour:

P2 : a← c.

a← ⊥.

We find that lfp(ΦSvL,P2) = 〈∅, ∅〉. In this program, a is undefined because
there is a clause a ← c and c is undefined. Again, the negative fact about a is
ignored in this case because of the presence of a clause with an undefined body.

The third problem is that the Stenning and van Lambalgen operator cannot
detect inconsistency in programs. From the previous example, P1 is inconsistent
because a is true from a positive fact but a is also false from the negative fact.
Another example follows:

P3 : a← b.

b← >.
a← ⊥.

It can be easily verified that lfp(ΦSvL,P3) = 〈{ a, b } , ∅〉. However, according to
the information expressed in the program, a should be both true and false. It
is true because there is a clause a ← b and b is true. On the other hand, a
should also be false because of the negative fact about a. Thus, this program is
inconsistent.

To summarize, the notion of negative facts proposed by Stenning and van
Lambalgen does not require any change in the definition of the operator, but it is
not accommodated well by the semantics of program clauses. As a consequence,
programs with negative information about A allow for models in which A is true
or undefined. Moreover, for programs with multiple clauses with A in the head,
the negative information about A is simply ignored when at least one of the
clauses has a true or undefined body. This amounts to preferring truth over
falsity and makes it impossible to detect inconsistencies in a program.

It is true that a human may gather some support for a fact as well as for
its negation, but the final decision about the truth of the atom is context-
dependent. Hence, we believe that the proposed notion of negative facts is not
satisfactory. In the following sections we will see some alternative definitions
for negative facts.

8.2 Negative Facts as Constraints

We can use constraints to simulate negative facts. We write a negative fact for
atom A as

⊥ ← A.

From the semantic point of view, this serves its purpose well – the clause
⊥ ← A is true if and only if A is false. However, a problem occurs when
considering the definition of ΦSvL,P because the operator does not accommodate
⊥ in the head. We can modify the definition to accommodate it:

Definition 8.1. Let I be an interpretation of program P. ΦSvL-cons,P(I) =
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〈
J>, J⊥

〉
where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥} ∪

{A | there exists a clause ⊥ ← A ∈ ground(P ) }

Suppose we have the program P1:

P1 : a← >.
⊥ ← a.

We find that lfp(ΦSvL-cons,P1) = 〈{ a } , { a }〉 = I where I is inconsistent because
a is in I> and also in I⊥. Thus, this definition of negative facts allows us to
detect inconsistent programs. To know whether a program P is inconsistent,
we can see whether the least fixed point of ΦSvL-cons,P(I) is consistent or not.
If the least fixed point is inconsistent, then the program is inconsistent as well.
The next example demonstrates a slightly more complicated case:

P3 : a← b.

b← >.
⊥ ← a.

We have lfp(ΦSvL-cons,P3) = 〈{ a, b } , { a }〉 which also corresponds with the in-
tuition: b is true because of the positive fact and a is both true and false and
the program can be labeled as inconsistent.

Another problem that we run into is caused by the underlying semantics (be
it  Lukasiewicz, Kleene or Fitting semantics) that makes the implication F ← G
undefined when F is false and G is undefined (see Table 6.1). Consider the
following program:

P2 : a← c.

⊥ ← a.

Then lfp(ΦSvL-cons,P2) = 〈∅, { a }〉 = I. While we believe that this interpretation
corresponds with the intuitions underlying the clauses of P2, it is not a model
of P2 because I(a) = ⊥, I(c) = u and hence I(a ← c) = u. Based on Stenning
and van Lambalgen’s original intention, which is that the negative facts should
be treated in the same way as positive facts, it turns out that I is indeed the
intended meaning for the program P2. Moreover, the only model of P2 where a is
false is the one where c is also false. This, however, seems to resemble abduction
that is studied in abductive logic programs [KD01]. Further discussion and
possible resolutions of this issue are left for future work.

Another problem with this definition is that we cannot handle constraints
with more than one atom in the body. For example, we cannot conclude any-
thing from the clause ⊥ ← A,B. Constraints are also usually not used for any
kind of inference, so we seem to be abusing them. A proper extension by con-
straints would be desirable, but it should be independent of the introduction of
negative facts.
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To summarize, constraints can be used to semantically capture negative
facts, in difference to the original proposal by Stenning and van Lambalgen.
However, the operator needs to be modified to accommodate this definition and
it may also happen that the least fixed point of the operator will no longer be
a model of the program itself. Also, it is questionable whether constraints are
a suitable tool for this purpose, since the modified operator makes inferences
based on the constraints contained in the program.

8.3 Using Program Transformation to Compute
Negative Facts

Given a program P. If A is known to be false, i.e. A← ⊥ is in P, then do the
following:

1. remove all clauses from P where A is the head;

2. replace all occurencies of ¬A by > and all occurencies of A by ⊥.

We call the resulting program the reduction of P and denote it by reduct(P).
The next step is compute Φ

SvL,reduct(P)
as usual. Let I be the resulting least

fixed point of Φ
SvL,reduct(P)

, then add A to I⊥. The result is the intended
semantics of P.

Let us see the result of P1, P2 and P3 from the previous examples. The
reduction of P1 is reduct(P1) = ∅ and lfp(Φ

SvL,reduct(P1)
) = 〈∅, ∅〉. Based on

the procedure, we get I = 〈∅, { a }〉 as the resulting intended semantics of P1.
We can see that the inconsistency of P1 was not detected, but in this case, a
was inferred to be false, as opposed to the original proposal where a is inferred
to be true. Hence, it seems that in this proposal falsity is preferred to truth
when both conclusions are required by the clauses of the program.

The reduction of P2 is also an empty program and hence lfp(Φ
SvL,reduct(P2)

)
is 〈∅, ∅〉. After adding a to the set of negative atoms, we obtain the interpretation
I = 〈∅, { a }〉. We run into the same problem as with the previous example
because I is neither a model of P2 nor a model of wcomp(P2).

Turning to P3, the reduction of P3 is

reduct(P3) : b← >.

and lfp(Φ
SvL,reduct(P3)

) = 〈{ b } , ∅〉. After adding a to the set of false atoms
we obtain the interpretation I = 〈{ b } , { a }〉. In this example, we can observe
the effect of preferring falsity over truth again.

Similarly to the original proposal, this notion of negative facts does not
require any change in the definition of the operator. Further, it is based on
a transformation, so there is no direct syntactic representation of the negative
information that would have a corresponding semantics. Also, for programs
with multiple clauses with A in the head, the negative information about A is
preferred over any other information. This amounts to preferring falsity over
truth and makes it impossible to detect inconsistencies in a program. Similarly
as in the previous proposal, it may happen that the resulting interpretation is
neither a model of the program nor a model of the program completion.
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8.4 Negative Facts as Default Negation in the
Head

The notion negation as failure in the head was introduced in [IS98] and used
extensively in Dynamic Logic Programming [ALP+98]. Such programs allow
negation as failure not only in the body of a rule as negative premises, but also
in the head as negative conclusions. So the negative fact for A is written as
follows:

¬A← >.

Similarly as in the proposal using constraints from Section 8.2, this syntax
is fully reflected in the semantics because a clause of the form ¬A← > is true
if and only if A is false. But in order to accommodate this syntax, we need to
update the definition of the Stenning and van Lambalgen operator as follows:

Definition 8.2. Let P be a program which is allowed to have a negative fact in
the head and let I be an interpretation of program P. ΦSvL-not,P (I) =

〈
J>, J⊥

〉
where

J> = {A | there exists A← Body ∈ ground(P) with I(Body) = > } and

J⊥ = {A | there exists A← Body ∈ ground(P) and
for all A← Body ∈ ground(P) we find I(Body) = ⊥} ∪

{A | there exists a clause ¬A← Body ∈ ground(P) with I(Body) = >}

In this syntax, we write the program P1 as follows.

P1 : a← >.
¬a← >.

The least fixed point of this program under the modified Stenning and van
Lambalgen operator is 〈{ a } , { a }〉 and it is inconsistent. Hence, consistency
of the program can be determined based on the consistency of the least fixed
point.

For the program P2, we arrive at the same problem as in the previous pro-
posals:

P2 : a← c.

¬a← >.

The least fixed point of this program under the modified Stenning and van
Lambalgen operator is 〈∅, { a }〉 and it is neither a model of P2 nor a model of
wcomp(P2).

Finally, program P3 is represented as follows:

P3 : a← b.

b← >.
¬a← >.

The least fixed point of ΦSvL-not,P3 is 〈{ a, b } , { a }〉 and it reflects the intended
meaning of P3.
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To summarize, default negation in heads can be used to semantically cap-
ture negative facts. The operator needs to be modified to accommodate this
definition and it may also happen that the least fixed point of the operator will
no longer be a model of the program itself.

8.5 Negative Facts as Explicit Negation

Pereira and Alferes in [AP92, AP96] suggest that there are two different nega-
tions in the logic program: default negation and explicit negation. Besides
Pereira and Alferes, several authors have stressed and shown the importance
of having a second kind of negation in a logic program for use in knowledge
representation and non-monotonic reasoning (see e.g. [GL91, Wag91, KS90]).

The default negation is known as implicit negation, i.e., it is not possible
to explicitly state falsity. Propositions are assumed false if there is no reason
to believe they are true. This negation is often called negation-as-finite-failure
and in this thesis it is denoted by ¬. This is what we want in some cases.
For instance, in the classical example of a database that explicitly states flight
connections, one wants to implicitly assume that the absence of a connection in
the database means that no such connection exists.

However, we need to express explicit negative information like what is de-
scribed by Stenning and van Lambalgen in [SvL08]. The negative information
plays an important role in natural discourse and common sense reasoning. The
representation of some problems in logic programming would be more natural
if logic programs had some way of explicitly representing falsity. Consider for
example the statement [GL90]:

“A school bus may cross railway tracks under
the condition that there is no approaching train”

It would be wrong to express this statement by the rule:

cross ← ¬train

By ¬A we mean a notation for default negation of atom A. The problem in
default negation is that the rule allows the bus to cross when there is no infor-
mation about the presence or absence of a train.

Now, suppose the notation neg A denotes the explicit negation of A. The
situation is different if explicit negation is used:

cross ← neg train

Here, neg train denotes the negative information about the absence of a train.
From the previous clause, the bus is only allowed to cross if the driver is sure
that there is no approaching train.

In order to extend our programs with the explicit negation, we additionally
define a new terminology. We use neg A to denote explicit negation of an atom
A. Hence, the extended clause is a clause in the form

A← B1, . . . , Bm. (m ≥ 1)
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where A is an atom or an explicit negation of some atom and each Bi for
1 ≤ i ≤ m is either a literal (atom or default negation of an atom) or explicit
negation of an atom or >. For the negative information about A we add the
clauses

neg A← >.
A← ¬ neg A.

An example follows:

P4 : a← b.

neg b← >.

After adding the implicit clause to P4 we obtain

P ′4 : a← b.

neg b← >.
b← ¬neg b.

The least fixed point of ΦSvL,P′4 is 〈{neg b } , { a, b }〉 and we can conclude that
we know explicitly the negation of b is true, hence we conclude b is false and we
infer that a is false as well.

In case of P2, we obtain the following program:

P ′2 : a← c.

neg a← >.
a← ¬neg a.

Further, lfp(ΦSvL,P′2) is 〈{neg a } , ∅〉. We can see that using a different kind of
negation encoded as new atoms, we were able to circumvent the problem of the
fixed point not being a model of the program and its weak completion.

Turning to the discussion of P3, we obtain the following program after adding
the implicit clauses:

P ′3 : a← b.

b← >.
neg a← >.

a← ¬neg a.

The least fixed point of ΦSvL,P′3 is 〈{ a, b,neg a } , ∅〉. We can choose to treat
this result as it is and perform some kind of paraconsistent reasoning with it,
or conclude from it that P3 is inconsistent because both a and neg a are true.

To summarize, the approach to negative facts using explicit negation does
not require any change in the definition of the operator and allows for incon-
sistency detection. Although it looks promising, future investigation will be
needed to examine it further.
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8.6 Summary

Stenning and van Lambalgen [SvL08] argue that the negative facts should be
processed in the same way as the positive facts. If A ← > is an expression for
the positive fact, then Stenning and van Lambalgen proposed A← ⊥ to be the
expression denoting a negative fact. However, several problems arise from their
syntax like: (i) regardless of the truth value of A, the clause A ← ⊥ is always
true, (ii) if a program contains another clause with head A, then negative facts
can be eliminated without changing the semantics of the program, (iii) the truth
values > and u are preferred to ⊥, (iv) the operator ignores any inconsistencies
in a program.

We showed four different approaches to handle negative facts. However,
we are not fully satisfied with any of them and each of them needs further
investigation. One of the major issues is how to detect and handle incon-
sistencies in a program. Reasoning in the presence of inconsistency is desir-
able in many contexts and it is fundamental for understanding human cogni-
tive processes. It has been studied in philosophical logic by several authors
[dC74, Gra78, BR80]. Their intuitions and results have been brought to logic
programming mainly by Blair, Pearce, Subrahmanian, Wagner, Damásio and
Pereira [BS89b, Pea92, Wag93, DP95, DP97]. For a survey of paraconsistent
semantics for logic programs, see [DP98].
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Chapter 9

Conclusion and Future
Work

It has been argued recently in [SvL08] that a completion-based approach cap-
tures many aspects of common sense reasoning. Unlike most approaches to
logically modelling common sense reasoning which rely on introspection to char-
acterize common sense, Stenning and van Lambalgen base their model on the
large corpus of cognitive science. The result is already helping logic program-
ming to be re-examined in fields such as medical decision-making.

In order to model human reasoning, Stenning and van Lambalgen define a
new consequence operator for logic programs. Thus, the role of investigating
human reasoning is as important as finding a model of the logic program by
taking the least fixed point of the consequence operator as the final state of
reasoning [SvL08]. In addition, their operator is defined similarly to the Fitting
operator.

This thesis is devoted to studying the properties of the Fitting and the
Stenning and van Lambalgen operators. We first studied the least fixed point
of these operators and ways to characterize it.

The Knaster-Tarski Fixed Point Theorem ensures that every monotonic
mapping on a complete partial order has a least fixed point. Moreover, this
least fixed point can be found by repeatedly applying the mapping starting
with the least element of the complete partial order. We have shown that the
space of three-valued interpretations I is a complete partial order and that
both the Fitting and the Stenning and van Lambalgen operators are monotonic
mappings on I. Thus, they have a least fixed point.

Then we turned to examining a stronger property of continuity. According
to the Kleene Fixed Point Theorem, the least fixed point of a continuous map-
ping can be found by repeatedly applying the mapping starting with the least
element of the complete partial order up to ω times. We found that neither of
the operators is continuous in general, but for certain subclasses of logic pro-
grams, the operators are indeed continuous. In particular, the operators are
continuous for the class of propositional programs because the underlying space
of interpretations I is finite. Using a mapping to propositional programs, we
then generalized this result to the class of ground programs for which the space
of interpretations may be infinite.
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Another important property in the semantics of logic programs is the con-
traction property. By the Banach Contraction Theorem, it is ensured that if a
mapping is a contraction, then it has a unique fixed point that can be found
by repeatedly applying the mapping starting with the any element of the met-
ric space up to ω times. This is important because humans usually reason
with some preliminary knowledge. Fitting in [Fit94] shows that using metric
methods, the two-valued consequence operator is a contraction for the class of
acceptable programs. He conjectures that the same method can be used to
show the contraction property of the Fitting operator as well. In this thesis,
we adopted his method and formally showed that the Fitting operator is also
a contraction for acceptable programs. However, this is not the case with the
Stenning and van Lambalgen operator. Their operator is not in general a con-
traction for acceptable programs, but we proved it is a contraction for the class
of acyclic programs. It is shown in [AB90] and [AB94] that every acyclic pro-
gram is also acceptable, hence for acyclic programs both the Fitting and the
Stenning and van Lambalgen operator are contractions.

In recent years, the Fitting operator for logic programs has not been used
much. It has been overtaken in interest by the well-founded semantics [GRS91]
and stable model semantics [GL88]. The latter extends the former in a well-
understood manner, and provides a two-valued semantics for logic programs.
Both capture transitive closure and other recursive rule behavior and, thus,
are useful for programming. However, there are trade-offs between the Fitting
semantics and well-founded semantics. The ability of well-founded semantics to
capture properties like graph reachability means that it cannot be modelled by
a finite first-order theory such as completion. Well-founded semantics also has
a higher complexity than the Fitting semantics. The relationship between the
Fitting semantics and the well-founded semantics is brought forward in [HW02]
using level mappings. The result is that the Fitting model is a subset of the
well-founded model and we showed that the Stenning and van Lambalgen model
is a subset of the Fitting model.

Both the Fitting and the Stenning and van Lambalgen operators use the
Fitting semantics [Fit85] for three-valued logic to define a model of a logic
program. However, the Fitting semantics does not admit the law of equivalence
(F ↔ G is semantically equivalent to F ← G∧G← F ). Consequently, the least
fixed point of the operators is only guaranteed to be a model of the program
completion but there is no guarantee that it is a model of the program itself.
In order to overcome this, we proposed to replace the Fitting semantics by
 Lukasiewicz three-valued semantics [ Luk20] under which the law of equivalence
holds. We showed that this replacement preserves the behavior of the operators
and has additional properties that the Fitting semantics lacks. In particular, the
model intersection property holds under the  Lukasiewicz semantics and we also
proved that the least fixed points of the operators are models of the program
completion and also models of the program itself.

In [HK94] a connectionist model generator for propositional logic programs
using recurrent networks with feed-forward core was presented. It was later
called the core method. We showed that the core method can be adapted to im-
plement the immediate consequence operator of Stenning and van Lambalgen.
We presented an algorithm for constructing the networks and proved that the
networks settle down in a state encoding the least fixed point of the operator.
Although our networks consist of logical threshold units, they can be replaced
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by bipolar sigmoidal ones while preserving the relationship to logic programs
by applying the method first presented in [dGZdC97] (see also [dGGB02]). The
modified networks can then be trained using backpropagation or related tech-
niques. Rule extraction methods can be applied to the trained networks and
the neural-symbolic cycle can be closed. On the other hand, to the best of our
knowledge, there is no evidence that backpropagation is neurally plausible.

The main contribution of thesis is in the field of logic programs. There
are, however, still many open issues to be addressed. In the following, we will
mention some of them to lead the future work.

First, there is a difficulty to express negative information as facts in logic
programs. In [SvL08] Stenning and van Lambalgen denote a negative fact as
a clause of the form A ← ⊥. However, their approach seems not well defined
because the semantics of their syntax does not reflect the intended meaning of
a negative fact. We proposed four different approaches to introduce negative
facts, namely using constraints, program transformation, explicit negation and
default negation in the head. We discussed the advantages and disadvantages
of these proposals but we could not find a single best solution. Hence, these
and possibly other approaches still needs to be discussed further.

Next, in [SvL08] integrity constraints and abduction are suggested to handle
additional human reasoning tasks. As a part of future work we would like to
investigate whether the techniques developed in [dGGRW07] can be applied to
model these tasks in a connectionist setting. Another important question is
that of how important the Stenning and van Lambalgen operator is from a logic
programming perspective.

Last but not least, it remains to be seen which semantics is better suited for
logic programming, common sense as well as human reasoning. It seems that
the  Lukasiewicz semantics has nicer theoretical properties, but we still have to
investigated how this semantics relates to questions concerning computability
and termination. It also appears that the  Lukasiewicz semantics gives more
flexibility than the Fitting semantics concerning common sense reasoning prob-
lems. As far as human reasoning is concerned we would like to find out how
individuals treat implications where the premise as well as the conclusion are
undefined as this is the distinctive feature between the  Lukasiewicz and the
Fitting semantics.
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5:169–171, 1920. English translation: On Three-Valued Logic.
In: Jan  Lukasiewicz Selected Works. (L. Borkowski, ed.), North
Holland, 87-88, 1990.

[NBR02] Rui Da Silva Neves, Jean-Francois Bonnefon, and Eric Raufaste.
An empirical test of patterns for nonmonotonic inference. Annals
of Mathematics and Artificial Intelligence, 34:107–130, 2002.

[Pea92] David Pearce. Reasoning with negative information, ii: Hard nega-
tion, strong negation and logic programs. In David Pearce and
Heinrich Wansing, editors, Proceedings of the International Work-
shop on Nonclassical Logics and Information Processing, volume
619 of Lecture Notes in Computer Science, pages 63–79, Berlin,
Germany, November 9-10 1992. Springer.

[Rei78] Raymond Reiter. On closed world data bases. In Hervé Gallaire
and Jack Minker, editors, Logic and Data Bases, pages 55–76.
Plenum Press, New York, 1978.
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