

FOUNDATIONS OF DATABASES AND QUERY LANGUAGES

Lecture 12: Evaluation of Datalog (2)

Markus Krötzsch

TU Dresden, 29 June 2015

Overview

- 1. Introduction | Relational data model
- 2. First-order queries
- 3. Complexity of query answering
- 4. Complexity of FO query answering
- 5. Conjunctive queries
- 6. Tree-like conjunctive queries
- 7. Query optimisation
- 8. Conjunctive Query Optimisation / First-Order Expressiveness
- 9. First-Order Expressiveness / Introduction to Datalog
- 10. Expressive Power and Complexity of Datalog
- 11. Optimisation and Evaluation of Datalog
- 12. Evaluation of Datalog (2)
- 13. Path queries
- 14. Outlook: database theory in practice

See course homepage [\Rightarrow link] for more information and materials

Review: Datalog Evaluation

A rule-based recursive query language

```
father(alice, bob)

mother(alice, carla)

Parent(x, y) \leftarrow father(x, y)

Parent(x, y) \leftarrow mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y) \leftarrow Parent(x, v) \land Parent(y, w) \land SameGeneration(v, w)
```

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Semi-Naive Evaluation: Example

$$e(1,2) \quad e(2,3) \quad e(3,4) \quad e(4,5)$$

$$(R1) \qquad \mathsf{T}(x,y) \leftarrow e(x,y)$$

$$(R2.1) \qquad \mathsf{T}(x,z) \leftarrow \Delta^{i}_{\mathsf{T}}(x,y) \wedge \mathsf{T}^{i}(y,z)$$

$$(R2.2') \qquad \mathsf{T}(x,z) \leftarrow \mathsf{T}^{i-1}(x,y) \wedge \Delta^{i}_{\mathsf{T}}(y,z)$$

How many body matches do we need to iterate over?

$$\begin{split} T_P^0 &= \emptyset & \text{initialisation} \\ T_P^1 &= \{\mathsf{T}(1,2),\mathsf{T}(2,3),\mathsf{T}(3,4),\mathsf{T}(4,5)\} & 4 \times (R1) \\ T_P^2 &= T_P^1 \cup \{\mathsf{T}(1,3),\mathsf{T}(2,4),\mathsf{T}(3,5)\} & 3 \times (R2.1) \\ T_P^3 &= T_P^2 \cup \{\mathsf{T}(1,4),\mathsf{T}(2,5),\mathsf{T}(1,5)\} & 3 \times (R2.1), 2 \times (R2.2') \\ T_P^4 &= T_P^3 &= T_P^\infty & 1 \times (R2.1), 1 \times (R2.2') \end{split}$$

In total, we considered 14 matches to derive 11 facts

Markus Krötzsch, 29 June 2015

Foundations of Databases and Query Languages

Semi-Naive Evaluation: Full Definition

In general, a rule of the form

 $\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{I}_1(\vec{z}_1) \land \mathsf{I}_2(\vec{z}_2) \land \ldots \land \mathsf{I}_m(\vec{z}_m)$

is transformed into m rules

. . .

$$\begin{split} \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \land \ldots \land \mathsf{e}_{n}(\vec{y}_{n}) \land \Delta_{\mathsf{l}_{1}}^{i}(\vec{z}_{1}) \land \mathsf{l}_{2}^{i}(\vec{z}_{2}) \land \ldots \land \mathsf{l}_{m}^{i}(\vec{z}_{m}) \\ \mathsf{H}(\vec{x}) &\leftarrow \mathsf{e}_{1}(\vec{y}_{1}) \land \ldots \land \mathsf{e}_{n}(\vec{y}_{n}) \land \mathsf{l}_{1}^{i-1}(\vec{z}_{1}) \land \Delta_{\mathsf{l}_{2}}^{i}(\vec{z}_{2}) \land \ldots \land \mathsf{l}_{m}^{i}(\vec{z}_{m}) \end{split}$$

 $\mathsf{H}(\vec{x}) \leftarrow \mathsf{e}_1(\vec{y}_1) \land \ldots \land \mathsf{e}_n(\vec{y}_n) \land \mathsf{I}_1^{i-1}(\vec{z}_1) \land \mathsf{I}_2^{i-1}(\vec{z}_2) \land \ldots \land \Delta_{\mathsf{I}_m}^i(\vec{z}_m)$

Advantages and disadvantages:

- Huge improvement over naive evaluation
- Some redundant computations remain (see example)
- Some overhead for implementation (store level of entailments)

Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a particular query

Example:

 $e(1, 2) \quad e(2, 3) \quad e(3, 4) \quad e(4, 5)$ (R1) $T(x, y) \leftarrow e(x, y)$ (R2) $T(x, z) \leftarrow T(x, y) \land T(y, z)$ Query(z) $\leftarrow T(2, z)$

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like T(1, 4), which are neither directly nor indirectly relevant for computing the query result.

Assumption

For all techniques presented in this lecture, we assume that the given Datalog program is safe.

- This is without loss of generality (as shown in exercise).
- One can avoid this by adding more cases to algorithms.

Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:

- Apply backward chaining/resolution: start with query, find rules that can derive query, evaluate body atoms of those rules (subqueries) recursively
- Evaluate intermediate results "set-at-a-time" (using relational algebra on tables)
- Evaluate queries in a "data-driven" way, where operations are applied only to newly computed intermediate results (similar to idea in semi-naive evaluation)
- "Push" variable bindings (constants) from heads (queries) into bodies (subqueries)
- "Pass" variable bindings (constants) "sideways" from one body atom to the next

Details can be realised in several ways.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example: if we want to derive atom T(2, z) from the rule $T(x, z) \leftarrow T(x, y) \wedge T(y, z)$, then *x* will be bound to 2, while *z* is free.

Adornments

To guide evaluation, we distinguish free and bound parameters in a predicate.

Example: if we want to derive atom T(2, z) from the rule $T(x, z) \leftarrow T(x, y) \wedge T(y, z)$, then *x* will be bound to 2, while *z* is free.

We use adornments to note the free/bound parameters in predicates.

Example:

$$\mathsf{T}^{bf}(x,z) \leftarrow \mathsf{T}^{bf}(x,y) \land \mathsf{T}^{bf}(y,z)$$

- since *x* is bound in the head, it is also bound in the first atom
- any match for the first atom binds *y*, so *y* is bound when evaluating the second atom (in left-to-right evaluation)

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$\begin{split} \mathsf{R}^{bbb}(x,y,z) &\leftarrow \mathsf{R}^{bbf}(x,y,v) \land \mathsf{R}^{bbb}(x,v,z) \\ \mathsf{R}^{fbf}(x,y,z) &\leftarrow \mathsf{R}^{fbf}(x,y,v) \land \mathsf{R}^{bbf}(x,v,z) \end{split}$$

Adornments: Examples

The adornment of the head of a rule determines the adornments of the body atoms:

$$\begin{split} \mathsf{R}^{bbb}(x,y,z) &\leftarrow \mathsf{R}^{bbf}(x,y,v) \land \mathsf{R}^{bbb}(x,v,z) \\ \mathsf{R}^{fbf}(x,y,z) &\leftarrow \mathsf{R}^{fbf}(x,y,v) \land \mathsf{R}^{bbf}(x,v,z) \end{split}$$

The order of body predicates matters affects the adornment:

$$\begin{split} \mathsf{S}^{f\!f}(x,y,z) &\leftarrow \mathsf{T}^{f\!f}(x,v) \wedge \mathsf{T}^{f\!f}(y,w) \wedge \mathsf{R}^{bbf}(v,w,z) \\ \mathsf{S}^{f\!f}(x,y,z) &\leftarrow \mathsf{R}^{f\!f}(v,w,z) \wedge \mathsf{T}^{f\!b}(x,v) \wedge \mathsf{T}^{f\!b}(y,w) \end{split}$$

 \rightsquigarrow For optimisation, some orders might be better than others

Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary relations.

When we "call" a rule with a head where some variables are bound, we need to provide the bindings as input \sim for adorned relation \mathbb{R}^{α} , we use an auxiliary relation input^{α}_R \sim arity of input^{α}_B = number of *b* in α

The result of calling a rule should be the "completed" input, with values for the unbound variables added \sim for adorned relation R^{α} , we use an auxiliary relation output^{α}_R \sim arity of output^{α}_R = arity of R (= length of α)

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations sup_i

 \rightarrow bindings required to evaluate rest of rule after the *i*th body atom

- \rightsquigarrow the first set of bindings sup₀ comes from input^{*a*}_B
- \rightsquigarrow the last set of bindings sup_n go to output^{α}_B

Auxiliary Relations for QSQ (2)

When evaluating body atoms from left to right, we use supplementary relations sup_i

 \rightarrow bindings required to evaluate rest of rule after the *i*th body atom

- \rightsquigarrow the first set of bindings sup $_0$ comes from input^{α}_B
- \rightsquigarrow the last set of bindings sup_n go to output^{α}_R

Example:

$$\begin{split} \mathsf{T}^{bf}(x,z) &\leftarrow \mathsf{T}^{bf}(x,y) \wedge \mathsf{T}^{bf}(y,z) \\ & & \uparrow \qquad & \searrow \\ \mathsf{input}_\mathsf{T}^{bf} \Rightarrow \mathsf{sup}_0[x] \quad \mathsf{sup}_1[x,y] \quad \mathsf{sup}_2[x,z] \Rightarrow \mathsf{output}_\mathsf{T}^{bf} \end{split}$$

- $\sup_0[x]$ is copied from $input_T^{bf}[x]$ (with some exceptions, see exercise)
- $\sup_{1}[x, y]$ is obtained by joining tables $\sup_{0}[x]$ and $\operatorname{output}_{T}^{bf}[x, y]$
- $\sup_{2}[x, z]$ is obtained by joining tables $\sup_{1}[x, y]$ and $\operatorname{output}_{T}^{bf}[y, z]$
- $output_T^{bf}[x, z]$ is copied from $sup_2[x, z]$

(we use "named" notation like [x, y] to suggest what to join on; the relations are the same) Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 15 of 43

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- · add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)

 \rightsquigarrow there are many strategies for implementing this general scheme

QSQ Evaluation

The set of all auxiliary relations is called a QSQ template (for the given set of adorned rules)

General evaluation:

- · add new tuples to auxiliary relations until reaching a fixed point
- evaluation of a rule can proceed as sketched on previous slide
- in addition, whenever new tuples are added to a sup relation that feeds into an IDB atom, the input relation of this atom is extended to include all binding given by sup (may trigger subquery evaluation)
- \rightsquigarrow there are many strategies for implementing this general scheme

Notation we will use:

• for an EDB atom *A*, we write *A*^{*I*} for table that consists of all matches for *A* in the database

Recursive QSQ

Recursive QSQ (QSQR) takes a "depth-first" approach to QSQ

Evaluation of single rule in QSQR:

Given: adorned rule r with head predicate R^{α} ; current values of all QSQ relations

- (1) Copy tuples input^{α}_R (that unify with rule head) to sup^r₀
- (2) For each body atom A_1, \ldots, A_n , do:
 - If A_i is an EDB atom, compute \sup_i as projection of $\sup_{i=1}^r \bowtie A_i^I$
 - If A_i is an IDB atom with adorned predicate S^{β} :
 - (a) Add new bindings from $\sup_{i=1}^{r}$, combined with constants in A_i , to $\operatorname{input}_{S}^{\beta}$
 - (b) If input^{β} changed, recursively evaluate all rules with head predicate S^{β}
 - (c) Compute $\sup_{i=1}^{r}$ as projection of $\sup_{i=1}^{r} \bowtie \operatorname{output}_{S}^{\beta}$
- (3) Add tuples in \sup_n^r to $output_R^{\alpha}$

QSQR Algorithm

Given: a Datalog program *P* and a conjunctive query $q[\vec{x}]$ (possibly with constants)

- (1) Create an adorned program P^a :
 - Turn the query $q[\vec{x}]$ into an adorned rule Query^{*f*...*f*}(\vec{x}) $\leftarrow q[\vec{x}]$
 - Recursively create adorned rules from rules in *P* for all adorned predicates in *P^a*.
- (2) Initialise all auxiliary relations to empty sets.
- (3) Evaluate the rule Query^{ff...f}(x) ← q[x].
 Repeat until no new tuples are added to any QSQ relation.
- (4) Return output^{ff...f}_{Query}

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x).

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \sim Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \sim Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

 $Query^f(x) \leftarrow S^{bf}(1,x)$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} & \mathsf{S}(x,x) \leftarrow \mathsf{h}(x) \\ & \mathsf{S}(x,y) \leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

Query^f(x) $\leftarrow S^{bf}(1, x)$ $S^{bf}(x, x) \leftarrow h(x)$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightsquigarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

(

$$\begin{aligned} &\mathsf{Query}^{f}(x) \leftarrow \mathsf{S}^{bf}(1,x) \\ &\mathsf{S}^{bf}(x,x) \leftarrow \mathsf{h}(x) \\ &\mathsf{S}^{bf}(x,y) \leftarrow \mathsf{p}(x,w) \land \mathsf{S}^{fb}(v,w) \land \mathsf{p}(y,v) \end{aligned}$$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightarrow Query rule: Query(x) \leftarrow S(1, x)

Transformed rules:

(

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$
 $S^{fb}(x, x) \leftarrow h(x)$

Predicates S (same generation), p (parent), h (human)

$$\begin{split} \mathsf{S}(x,x) &\leftarrow \mathsf{h}(x) \\ \mathsf{S}(x,y) &\leftarrow \mathsf{p}(x,w) \land \mathsf{S}(v,w) \land \mathsf{p}(y,v) \end{split}$$

with query S(1, x). \rightsquigarrow Query rule: Query(x) \leftarrow S(1, x)

(

Transformed rules:

Query^f(x)
$$\leftarrow S^{bf}(1, x)$$

 $S^{bf}(x, x) \leftarrow h(x)$
 $S^{bf}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$
 $S^{fb}(x, x) \leftarrow h(x)$
 $S^{fb}(x, y) \leftarrow p(x, w) \land S^{fb}(v, w) \land p(y, v)$

Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed?

Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a specific query.

Semi-naive evaluation is not goal directed: it computes all entailed facts.

Can a bottom-up technique be goal-directed? \rightsquigarrow yes, by magic

Magic Sets

- "Simulation" of QSQ by Datalog rules
- Can be evaluated bottom up, e.g., with semi-naive evaluation
- The "magic sets" are the sets of tuples stored in the auxiliary relations
- Several other variants of the method exist

Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection \sim can we just implement this in Datalog?

Magic Sets as Simulation of QSQ

Idea: the information flow in QSQ(R) mainly uses join and projection \sim can we just implement this in Datalog?

Example:

$$\begin{split} \mathsf{T}^{bf}(x,z) &\leftarrow \mathsf{T}^{bf}(x,y) \wedge \mathsf{T}^{bf}(y,z) \\ & & \uparrow & & \uparrow \\ \mathsf{input}_\mathsf{T}^{bf} \Rightarrow \mathsf{sup}_0[x] \quad \mathsf{sup}_1[x,y] \quad \mathsf{sup}_2[x,z] \Rightarrow \mathsf{output}_\mathsf{T}^{bf} \end{split}$$

Could be expressed using rules:

$$\begin{split} \sup_{0}(x) &\leftarrow \operatorname{input}_{\mathsf{T}}^{bf}(x) \\ \sup_{1}(x,y) &\leftarrow \sup_{0}(x) \wedge \operatorname{output}_{\mathsf{T}}^{bf}(x,y) \\ \sup_{2}(x,z) &\leftarrow \sup_{1}(x,y) \wedge \operatorname{output}_{\mathsf{T}}^{bf}(y,z) \\ \operatorname{output}_{\mathsf{T}}^{bf}(x,z) &\leftarrow \sup_{2}(x,z) \end{split}$$

Magic Sets as Simulation of QSQ (2)

Observation: $\sup_0(x)$ and $\sup_2(x, z)$ are redundant. Simpler:

$$\begin{aligned} \sup_{\mathsf{T}}(x,y) \leftarrow \mathsf{input}_{\mathsf{T}}^{bf}(x) \wedge \mathsf{output}_{\mathsf{T}}^{bf}(x,y) \\ \mathsf{output}_{\mathsf{T}}^{bf}(x,z) \leftarrow \mathsf{sup}_{\mathsf{I}}(x,y) \wedge \mathsf{output}_{\mathsf{T}}^{bf}(y,z) \end{aligned}$$

We still need to "call" subqueries recursively:

 $\operatorname{input}_{\mathsf{T}}^{bf}(y) \leftarrow \sup_{1}(x, y)$

It is easy to see how to do this for arbitrary adorned rules.

A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

$$\mathsf{R}^{bf}(x,y) \leftarrow \mathsf{T}^{bbf}(x,a,z)$$

This leads to the following rules using Magic Sets:

$$\begin{aligned} \mathsf{output}_{\mathsf{R}}^{bf}(x,y) \leftarrow \mathsf{input}_{\mathsf{R}}^{bf}(x) \wedge \mathsf{output}_{\mathsf{T}}^{bfb}(x,a,y) \\ \mathsf{input}_{\mathsf{T}}^{bbf}(x,a) \leftarrow \mathsf{input}_{\mathsf{R}}^{bf}(x) \end{aligned}$$

Note that we do not need to use auxiliary predicates sup_0 or sup_1 here, by the simplification on the previous slide.

Magic Sets: Summary

A goal-directed bottom-up technique:

- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Magic Sets: Summary

A goal-directed bottom-up technique:

- Rewritten program rules can be constructed on the fly
- Bottom-up evaluation can be semi-naive (avoid repeated rule applications)
- Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if

- Database does not change very often (materialisation as one-time investment)
- Queries are very diverse and may use any IDB relation (bad for caching supplementary relations)
- \rightsquigarrow semi-naive evaluation is still very common in practice

Datalog is a special case of many approaches, leading to very diverse implementation techniques.

• Prolog is essentially "Datalog with function symbols" (and many built-ins).

- Prolog is essentially "Datalog with function symbols" (and many built-ins).
- Answer Set Programming is "Datalog extended with non-monotonic negation and disjunction"

- Prolog is essentially "Datalog with function symbols" (and many built-ins).
- Answer Set Programming is "Datalog extended with non-monotonic negation and disjunction"
- Production Rules use "bottom-up rule reasoning with operational, non-monotonic built-ins"

- Prolog is essentially "Datalog with function symbols" (and many built-ins).
- Answer Set Programming is "Datalog extended with non-monotonic negation and disjunction"
- Production Rules use "bottom-up rule reasoning with operational, non-monotonic built-ins"
- Recursive SQL Queries are a syntactically restricted set of Datalog rules

- Prolog is essentially "Datalog with function symbols" (and many built-ins).
- Answer Set Programming is "Datalog extended with non-monotonic negation and disjunction"
- Production Rules use "bottom-up rule reasoning with operational, non-monotonic built-ins"
- Recursive SQL Queries are a syntactically restricted set of Datalog rules
- \rightsquigarrow Different scenarios, different optimal solutions
- → Not all implementations are complete (e.g., Prolog)

Datalog Implementation in Practice

Dedicated Datalog engines as of 2015:

- DLV Answer set programming engine with good performance on Datalog programs (commercial)
- LogicBlox Big data analytics platform that uses Datalog rules (commercial)
- Datomic Distributed, versioned database using Datalog as main query language (commercial)

Several RDF (graph data model) DBMS also support Datalog-like rules, usually with limited IDB arity, e.g.:

- OWLIM Disk-backed RDF database with materialisation at load time (commercial)
- RDFox Fast in-memory RDF database with runtime materialisation and updates (academic)
- \rightsquigarrow Extremely diverse tools for very different requirements

Summary and Outlook

Several implementation techniques for Datalog

- bottom up (from the data) or top down (from the query)
- goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:

- naive evaluation (not goal-directed)
- semi-naive evaluation (not goal-directed)
- Magic Sets (goal-directed)

Next topics:

- Graph databases and path queries
- Applications