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Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Path queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
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Review: Datalog Evaluation

A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation
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Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 4 of 43



Semi-Naive Evaluation: Full Definition
In general, a rule of the form

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ I1(~z1) ∧ I2(~z2) ∧ . . . ∧ Im(~zm)

is transformed into m rules

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ ∆i
I1 (~z1) ∧ Ii2(~z2) ∧ . . . ∧ Iim(~zm)

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ ∆i

I2 (~z2) ∧ . . . ∧ Iim(~zm)

. . .

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ Ii−1

2 (~z2) ∧ . . . ∧ ∆i
Im (~zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)
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Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a
particular query

Example:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

Query(z)← T(2, z)

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like
T(1, 4), which are neither directly nor indirectly relevant for
computing the query result.
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Assumption

For all techniques presented in this lecture, we assume that the
given Datalog program is safe.

• This is without loss of generality (as shown in exercise).

• One can avoid this by adding more cases to algorithms.
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Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:
• Apply backward chaining/resolution: start with query, find rules that

can derive query, evaluate body atoms of those rules (subqueries)
recursively

• Evaluate intermediate results “set-at-a-time” (using relational algebra
on tables)

• Evaluate queries in a “data-driven” way, where operations are
applied only to newly computed intermediate results (similar to idea
in semi-naive evaluation)

• “Push” variable bindings (constants) from heads (queries) into
bodies (subqueries)

• “Pass” variable bindings (constants) “sideways” from one body atom
to the next

Details can be realised in several ways.
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Adornments
To guide evaluation, we distinguish free and bound parameters in a
predicate.

Example: if we want to derive atom T(2, z) from the rule
T(x, z)← T(x, y) ∧ T(y, z), then x will be bound to 2, while z is free.

We use adornments to note the free/bound parameters in predicates.

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)

• since x is bound in the head, it is also bound in the first atom

• any match for the first atom binds y, so y is bound when
evaluating the second atom (in left-to-right evaluation)
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Adornments: Examples

The adornment of the head of a rule determines the adornments of
the body atoms:

Rbbb(x, y, z)← Rbbf (x, y, v) ∧ Rbbb(x, v, z)

Rfbf (x, y, z)← Rfbf (x, y, v) ∧ Rbbf (x, v, z)

The order of body predicates matters affects the adornment:

Sfff (x, y, z)← Tff (x, v) ∧ Tff (y, w) ∧ Rbbf (v, w, z)

Sfff (x, y, z)← Rfff (v, w, z) ∧ Tfb(x, v) ∧ Tfb(y, w)

{ For optimisation, some orders might be better than others
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Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary
relations.

When we “call” a rule with a head where some variables are bound,
we need to provide the bindings as input
{ for adorned relation Rα, we use an auxiliary relation inputαR
{ arity of inputαR = number of b in α

The result of calling a rule should be the “completed” input, with
values for the unbound variables added
{ for adorned relation Rα, we use an auxiliary relation outputαR
{ arity of outputαR = arity of R (= length of α)
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Auxiliary Relations for QSQ (2)
When evaluating body atoms from left to right, we use
supplementary relations supi

{ bindings required to evaluate rest of rule after the ith body atom
{ the first set of bindings sup0 comes from inputαR
{ the last set of bindings supn go to outputαR

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

• sup0[x] is copied from inputbf
T [x] (with some exceptions, see exercise)

• sup1[x, y] is obtained by joining tables sup0[x] and outputbf
T [x, y]

• sup2[x, z] is obtained by joining tables sup1[x, y] and outputbf
T [y, z]

• outputbf
T [x, z] is copied from sup2[x, z]

(we use “named” notation like [x, y] to suggest what to join on; the relations are the same)
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QSQ Evaluation
The set of all auxiliary relations is called a QSQ template (for the
given set of adorned rules)

General evaluation:

• add new tuples to auxiliary relations until reaching a fixed point

• evaluation of a rule can proceed as sketched on previous slide

• in addition, whenever new tuples are added to a sup relation
that feeds into an IDB atom, the input relation of this atom is
extended to include all binding given by sup (may trigger
subquery evaluation)

{ there are many strategies for implementing this general scheme

Notation we will use:

• for an EDB atom A, we write AI for table that consists of all
matches for A in the database
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Recursive QSQ
Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:
Given: adorned rule r with head predicate Rα; current values of all
QSQ relations

(1) Copy tuples inputαR (that unify with rule head) to supr
0

(2) For each body atom A1, . . . , An, do:
– If Ai is an EDB atom, compute supi as projection of supr

i−1 ./ AIi
– If Ai is an IDB atom with adorned predicate Sβ:

(a) Add new bindings from supr
i−1, combined with

constants in Ai, to inputβS
(b) If inputβS changed, recursively evaluate all rules with

head predicate Sβ

(c) Compute supr
i as projection of supr

i−1 ./ outputβS
(3) Add tuples in supr

n to outputαR
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QSQR Algorithm

Given: a Datalog program P and a conjunctive query q[~x] (possibly
with constants)

(1) Create an adorned program Pa:
– Turn the query q[~x] into an adorned rule

Queryff ...f (~x)← q[~x]
– Recursively create adorned rules from rules in P for all

adorned predicates in Pa.

(2) Initialise all auxiliary relations to empty sets.

(3) Evaluate the rule Queryff ...f (~x)← q[~x].
Repeat until no new tuples are added to any QSQ relation.

(4) Return outputff ...fQuery
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QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).

{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)
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Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a
specific query.

Semi-naive evaluation is not goal directed: it computes all entailed
facts.

Can a bottom-up technique be goal-directed?

{ yes, by magic

Magic Sets

• “Simulation” of QSQ by Datalog rules

• Can be evaluated bottom up, e.g., with semi-naive evaluation

• The “magic sets” are the sets of tuples stored in the auxiliary
relations

• Several other variants of the method exist
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Magic Sets as Simulation of QSQ
Idea: the information flow in QSQ(R) mainly uses join and projection
{ can we just implement this in Datalog?

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

Could be expressed using rules:

sup0(x)← inputbf
T (x)

sup1(x, y)← sup0(x) ∧ outputbf
T (x, y)

sup2(x, z)← sup1(x, y) ∧ outputbf
T (y, z)

outputbf
T (x, z)← sup2(x, z)
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Magic Sets as Simulation of QSQ (2)

Observation: sup0(x) and sup2(x, z) are redundant. Simpler:

sup1(x, y)← inputbf
T (x) ∧ outputbf

T (x, y)

outputbf
T (x, z)← sup1(x, y) ∧ outputbf

T (y, z)

We still need to “call” subqueries recursively:

inputbf
T (y)← sup1(x, y)

It is easy to see how to do this for arbitrary adorned rules.
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A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

Rbf (x, y)← Tbbf (x, a, z)

This leads to the following rules using Magic Sets:

outputbf
R (x, y)← inputbf

R (x) ∧ outputbfb
T (x, a, y)

inputbbf
T (x, a)← inputbf

R (x)

Note that we do not need to use auxiliary predicates sup0 or sup1 here, by
the simplification on the previous slide.
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Magic Sets: Summary

A goal-directed bottom-up technique:

• Rewritten program rules can be constructed on the fly

• Bottom-up evaluation can be semi-naive (avoid repeated rule
applications)

• Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if

• Database does not change very often (materialisation as
one-time investment)

• Queries are very diverse and may use any IDB relation (bad
for caching supplementary relations)

{ semi-naive evaluation is still very common in practice
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Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)
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Datalog Implementation in Practice

Dedicated Datalog engines as of 2015:

• DLV Answer set programming engine with good performance
on Datalog programs (commercial)

• LogicBlox Big data analytics platform that uses Datalog rules
(commercial)

• Datomic Distributed, versioned database using Datalog as
main query language (commercial)

Several RDF (graph data model) DBMS also support Datalog-like
rules, usually with limited IDB arity, e.g.:

• OWLIM Disk-backed RDF database with materialisation at
load time (commercial)

• RDFox Fast in-memory RDF database with runtime
materialisation and updates (academic)

{ Extremely diverse tools for very different requirements
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Summary and Outlook

Several implementation techniques for Datalog

• bottom up (from the data) or top down (from the query)

• goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:

• naive evaluation (not goal-directed)

• semi-naive evaluation (not goal-directed)

• Magic Sets (goal-directed)

Next topics:

• Graph databases and path queries

• Applications
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