
FOUNDATIONS OF DATABASES
AND QUERY LANGUAGES

Lecture 12: Evaluation of Datalog (2)

Markus Krötzsch

TU Dresden, 29 June 2015

https://ddll.inf.tu-dresden.de/web/Foundations_of_Databases_and_Query_Languages_%28SS2015%29
http://korrekt.org/


Overview
1. Introduction | Relational data model
2. First-order queries
3. Complexity of query answering
4. Complexity of FO query answering
5. Conjunctive queries
6. Tree-like conjunctive queries
7. Query optimisation
8. Conjunctive Query Optimisation / First-Order Expressiveness
9. First-Order Expressiveness / Introduction to Datalog

10. Expressive Power and Complexity of Datalog
11. Optimisation and Evaluation of Datalog
12. Evaluation of Datalog (2)
13. Path queries
14. Outlook: database theory in practice

See course homepage [⇒ link] for more information and materials
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 2 of 43

https://ddll.inf.tu-dresden.de/web/Foundations_of_Databases_and_Query_Languages_%28SS2015%29


Review: Datalog Evaluation

A rule-based recursive query language

father(alice, bob)

mother(alice, carla)

Parent(x, y)← father(x, y)

Parent(x, y)← mother(x, y)

SameGeneration(x, x)

SameGeneration(x, y)← Parent(x, v) ∧ Parent(y, w) ∧ SameGeneration(v, w)

Perfect static optimisation for Datalog is undecidable

Datalog queries can be evaluated bottom-up or top-down

Simplest practical bottom-up technique: semi-naive evaluation

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 3 of 43



Semi-Naive Evaluation: Example

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2.1) T(x, z)← ∆i
T(x, y) ∧ Ti(y, z)

(R2.2′) T(x, z)← Ti−1(x, y) ∧ ∆i
T(y, z)

How many body matches do we need to iterate over?

T0
P = ∅ initialisation

T1
P = {T(1, 2), T(2, 3), T(3, 4), T(4, 5)} 4 × (R1)

T2
P = T1

P ∪ {T(1, 3), T(2, 4), T(3, 5)} 3 × (R2.1)

T3
P = T2

P ∪ {T(1, 4), T(2, 5), T(1, 5)} 3 × (R2.1), 2 × (R2.2′)

T4
P = T3

P = T∞P 1 × (R2.1), 1 × (R2.2′)

In total, we considered 14 matches to derive 11 facts
Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 4 of 43



Semi-Naive Evaluation: Full Definition
In general, a rule of the form

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ I1(~z1) ∧ I2(~z2) ∧ . . . ∧ Im(~zm)

is transformed into m rules

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ ∆i
I1 (~z1) ∧ Ii2(~z2) ∧ . . . ∧ Iim(~zm)

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ ∆i

I2 (~z2) ∧ . . . ∧ Iim(~zm)

. . .

H(~x)← e1(~y1) ∧ . . . ∧ en(~yn) ∧ Ii−1
1 (~z1) ∧ Ii−1

2 (~z2) ∧ . . . ∧ ∆i
Im (~zm)

Advantages and disadvantages:

• Huge improvement over naive evaluation

• Some redundant computations remain (see example)

• Some overhead for implementation (store level of entailments)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 5 of 43



Top-Down Evaluation

Idea: we may not need to compute all derivations to answer a
particular query

Example:

e(1, 2) e(2, 3) e(3, 4) e(4, 5)

(R1) T(x, y)← e(x, y)

(R2) T(x, z)← T(x, y) ∧ T(y, z)

Query(z)← T(2, z)

The answers to Query are the T-successors of 2.

However, bottom-up computation would also produce facts like
T(1, 4), which are neither directly nor indirectly relevant for
computing the query result.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 6 of 43



Assumption

For all techniques presented in this lecture, we assume that the
given Datalog program is safe.

• This is without loss of generality (as shown in exercise).

• One can avoid this by adding more cases to algorithms.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 7 of 43



Query-Subquery (QSQ)

QSQ is a technique for organising top-down Datalog query evaluation

Main principles:
• Apply backward chaining/resolution: start with query, find rules that

can derive query, evaluate body atoms of those rules (subqueries)
recursively

• Evaluate intermediate results “set-at-a-time” (using relational algebra
on tables)

• Evaluate queries in a “data-driven” way, where operations are
applied only to newly computed intermediate results (similar to idea
in semi-naive evaluation)

• “Push” variable bindings (constants) from heads (queries) into
bodies (subqueries)

• “Pass” variable bindings (constants) “sideways” from one body atom
to the next

Details can be realised in several ways.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 8 of 43



Adornments
To guide evaluation, we distinguish free and bound parameters in a
predicate.

Example: if we want to derive atom T(2, z) from the rule
T(x, z)← T(x, y) ∧ T(y, z), then x will be bound to 2, while z is free.

We use adornments to note the free/bound parameters in predicates.

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)

• since x is bound in the head, it is also bound in the first atom

• any match for the first atom binds y, so y is bound when
evaluating the second atom (in left-to-right evaluation)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 9 of 43



Adornments
To guide evaluation, we distinguish free and bound parameters in a
predicate.

Example: if we want to derive atom T(2, z) from the rule
T(x, z)← T(x, y) ∧ T(y, z), then x will be bound to 2, while z is free.

We use adornments to note the free/bound parameters in predicates.

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)

• since x is bound in the head, it is also bound in the first atom

• any match for the first atom binds y, so y is bound when
evaluating the second atom (in left-to-right evaluation)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 10 of 43



Adornments: Examples

The adornment of the head of a rule determines the adornments of
the body atoms:

Rbbb(x, y, z)← Rbbf (x, y, v) ∧ Rbbb(x, v, z)

Rfbf (x, y, z)← Rfbf (x, y, v) ∧ Rbbf (x, v, z)

The order of body predicates matters affects the adornment:

Sfff (x, y, z)← Tff (x, v) ∧ Tff (y, w) ∧ Rbbf (v, w, z)

Sfff (x, y, z)← Rfff (v, w, z) ∧ Tfb(x, v) ∧ Tfb(y, w)

{ For optimisation, some orders might be better than others

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 11 of 43



Adornments: Examples

The adornment of the head of a rule determines the adornments of
the body atoms:

Rbbb(x, y, z)← Rbbf (x, y, v) ∧ Rbbb(x, v, z)

Rfbf (x, y, z)← Rfbf (x, y, v) ∧ Rbbf (x, v, z)

The order of body predicates matters affects the adornment:

Sfff (x, y, z)← Tff (x, v) ∧ Tff (y, w) ∧ Rbbf (v, w, z)

Sfff (x, y, z)← Rfff (v, w, z) ∧ Tfb(x, v) ∧ Tfb(y, w)

{ For optimisation, some orders might be better than others

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 12 of 43



Auxiliary Relations for QSQ

To control evaluation, we store intermediate results in auxiliary
relations.

When we “call” a rule with a head where some variables are bound,
we need to provide the bindings as input
{ for adorned relation Rα, we use an auxiliary relation inputαR
{ arity of inputαR = number of b in α

The result of calling a rule should be the “completed” input, with
values for the unbound variables added
{ for adorned relation Rα, we use an auxiliary relation outputαR
{ arity of outputαR = arity of R (= length of α)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 13 of 43



Auxiliary Relations for QSQ (2)
When evaluating body atoms from left to right, we use
supplementary relations supi

{ bindings required to evaluate rest of rule after the ith body atom
{ the first set of bindings sup0 comes from inputαR
{ the last set of bindings supn go to outputαR

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

• sup0[x] is copied from inputbf
T [x] (with some exceptions, see exercise)

• sup1[x, y] is obtained by joining tables sup0[x] and outputbf
T [x, y]

• sup2[x, z] is obtained by joining tables sup1[x, y] and outputbf
T [y, z]

• outputbf
T [x, z] is copied from sup2[x, z]

(we use “named” notation like [x, y] to suggest what to join on; the relations are the same)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 14 of 43



Auxiliary Relations for QSQ (2)
When evaluating body atoms from left to right, we use
supplementary relations supi

{ bindings required to evaluate rest of rule after the ith body atom
{ the first set of bindings sup0 comes from inputαR
{ the last set of bindings supn go to outputαR

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

• sup0[x] is copied from inputbf
T [x] (with some exceptions, see exercise)

• sup1[x, y] is obtained by joining tables sup0[x] and outputbf
T [x, y]

• sup2[x, z] is obtained by joining tables sup1[x, y] and outputbf
T [y, z]

• outputbf
T [x, z] is copied from sup2[x, z]

(we use “named” notation like [x, y] to suggest what to join on; the relations are the same)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 15 of 43



QSQ Evaluation
The set of all auxiliary relations is called a QSQ template (for the
given set of adorned rules)

General evaluation:

• add new tuples to auxiliary relations until reaching a fixed point

• evaluation of a rule can proceed as sketched on previous slide

• in addition, whenever new tuples are added to a sup relation
that feeds into an IDB atom, the input relation of this atom is
extended to include all binding given by sup (may trigger
subquery evaluation)

{ there are many strategies for implementing this general scheme

Notation we will use:

• for an EDB atom A, we write AI for table that consists of all
matches for A in the database

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 16 of 43



QSQ Evaluation
The set of all auxiliary relations is called a QSQ template (for the
given set of adorned rules)

General evaluation:

• add new tuples to auxiliary relations until reaching a fixed point

• evaluation of a rule can proceed as sketched on previous slide

• in addition, whenever new tuples are added to a sup relation
that feeds into an IDB atom, the input relation of this atom is
extended to include all binding given by sup (may trigger
subquery evaluation)

{ there are many strategies for implementing this general scheme

Notation we will use:

• for an EDB atom A, we write AI for table that consists of all
matches for A in the database

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 17 of 43



Recursive QSQ
Recursive QSQ (QSQR) takes a “depth-first” approach to QSQ

Evaluation of single rule in QSQR:
Given: adorned rule r with head predicate Rα; current values of all
QSQ relations

(1) Copy tuples inputαR (that unify with rule head) to supr
0

(2) For each body atom A1, . . . , An, do:
– If Ai is an EDB atom, compute supi as projection of supr

i−1 ./ AIi
– If Ai is an IDB atom with adorned predicate Sβ:

(a) Add new bindings from supr
i−1, combined with

constants in Ai, to inputβS
(b) If inputβS changed, recursively evaluate all rules with

head predicate Sβ

(c) Compute supr
i as projection of supr

i−1 ./ outputβS
(3) Add tuples in supr

n to outputαR

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 18 of 43



QSQR Algorithm

Given: a Datalog program P and a conjunctive query q[~x] (possibly
with constants)

(1) Create an adorned program Pa:
– Turn the query q[~x] into an adorned rule

Queryff ...f (~x)← q[~x]
– Recursively create adorned rules from rules in P for all

adorned predicates in Pa.

(2) Initialise all auxiliary relations to empty sets.

(3) Evaluate the rule Queryff ...f (~x)← q[~x].
Repeat until no new tuples are added to any QSQ relation.

(4) Return outputff ...fQuery

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 19 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).

{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 20 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 21 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 22 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 23 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 24 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 25 of 43



QSQR Transformation: Example
Predicates S (same generation), p (parent), h (human)

S(x, x)← h(x)

S(x, y)← p(x, w) ∧ S(v, w) ∧ p(y, v)

with query S(1, x).
{ Query rule: Query(x)← S(1, x)

Transformed rules:

Queryf (x)← Sbf (1, x)

Sbf (x, x)← h(x)

Sbf (x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Sfb(x, x)← h(x)

Sfb(x, y)← p(x, w) ∧ Sfb(v, w) ∧ p(y, v)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 26 of 43



Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a
specific query.

Semi-naive evaluation is not goal directed: it computes all entailed
facts.

Can a bottom-up technique be goal-directed?

{ yes, by magic

Magic Sets

• “Simulation” of QSQ by Datalog rules

• Can be evaluated bottom up, e.g., with semi-naive evaluation

• The “magic sets” are the sets of tuples stored in the auxiliary
relations

• Several other variants of the method exist

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 27 of 43



Magic Sets

QSQ(R) is a goal directed procedure: it tries to derive results for a
specific query.

Semi-naive evaluation is not goal directed: it computes all entailed
facts.

Can a bottom-up technique be goal-directed?
{ yes, by magic

Magic Sets

• “Simulation” of QSQ by Datalog rules

• Can be evaluated bottom up, e.g., with semi-naive evaluation

• The “magic sets” are the sets of tuples stored in the auxiliary
relations

• Several other variants of the method exist

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 28 of 43



Magic Sets as Simulation of QSQ
Idea: the information flow in QSQ(R) mainly uses join and projection
{ can we just implement this in Datalog?

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

Could be expressed using rules:

sup0(x)← inputbf
T (x)

sup1(x, y)← sup0(x) ∧ outputbf
T (x, y)

sup2(x, z)← sup1(x, y) ∧ outputbf
T (y, z)

outputbf
T (x, z)← sup2(x, z)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 29 of 43



Magic Sets as Simulation of QSQ
Idea: the information flow in QSQ(R) mainly uses join and projection
{ can we just implement this in Datalog?

Example:

Tbf (x, z)← Tbf (x, y) ∧ Tbf (y, z)
⇑ u ⇑ u

inputbf
T ⇒ sup0[x] sup1[x, y] sup2[x, z]⇒ outputbf

T

Could be expressed using rules:

sup0(x)← inputbf
T (x)

sup1(x, y)← sup0(x) ∧ outputbf
T (x, y)

sup2(x, z)← sup1(x, y) ∧ outputbf
T (y, z)

outputbf
T (x, z)← sup2(x, z)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 30 of 43



Magic Sets as Simulation of QSQ (2)

Observation: sup0(x) and sup2(x, z) are redundant. Simpler:

sup1(x, y)← inputbf
T (x) ∧ outputbf

T (x, y)

outputbf
T (x, z)← sup1(x, y) ∧ outputbf

T (y, z)

We still need to “call” subqueries recursively:

inputbf
T (y)← sup1(x, y)

It is easy to see how to do this for arbitrary adorned rules.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 31 of 43



A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

Rbf (x, y)← Tbbf (x, a, z)

This leads to the following rules using Magic Sets:

outputbf
R (x, y)← inputbf

R (x) ∧ outputbfb
T (x, a, y)

inputbbf
T (x, a)← inputbf

R (x)

Note that we do not need to use auxiliary predicates sup0 or sup1 here, by
the simplification on the previous slide.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 32 of 43



A Note on Constants

Constants in rule bodies must lead to bindings in the subquery.

Example: the following rule is correctly adorned

Rbf (x, y)← Tbbf (x, a, z)

This leads to the following rules using Magic Sets:

outputbf
R (x, y)← inputbf

R (x) ∧ outputbfb
T (x, a, y)

inputbbf
T (x, a)← inputbf

R (x)

Note that we do not need to use auxiliary predicates sup0 or sup1 here, by
the simplification on the previous slide.

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 33 of 43



Magic Sets: Summary

A goal-directed bottom-up technique:

• Rewritten program rules can be constructed on the fly

• Bottom-up evaluation can be semi-naive (avoid repeated rule
applications)

• Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if

• Database does not change very often (materialisation as
one-time investment)

• Queries are very diverse and may use any IDB relation (bad
for caching supplementary relations)

{ semi-naive evaluation is still very common in practice

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 34 of 43



Magic Sets: Summary

A goal-directed bottom-up technique:

• Rewritten program rules can be constructed on the fly

• Bottom-up evaluation can be semi-naive (avoid repeated rule
applications)

• Supplementary relations can be cached in between queries

Nevertheless, a full materialisation might be better, if

• Database does not change very often (materialisation as
one-time investment)

• Queries are very diverse and may use any IDB relation (bad
for caching supplementary relations)

{ semi-naive evaluation is still very common in practice

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 35 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 36 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 37 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 38 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 39 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 40 of 43



Datalog as a Special Case

Datalog is a special case of many approaches, leading to very
diverse implementation techniques.

• Prolog is essentially “Datalog with function symbols” (and
many built-ins).

• Answer Set Programming is “Datalog extended with
non-monotonic negation and disjunction”

• Production Rules use “bottom-up rule reasoning with
operational, non-monotonic built-ins”

• Recursive SQL Queries are a syntactically restricted set of
Datalog rules

{ Different scenarios, different optimal solutions
{ Not all implementations are complete (e.g., Prolog)

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 41 of 43



Datalog Implementation in Practice

Dedicated Datalog engines as of 2015:

• DLV Answer set programming engine with good performance
on Datalog programs (commercial)

• LogicBlox Big data analytics platform that uses Datalog rules
(commercial)

• Datomic Distributed, versioned database using Datalog as
main query language (commercial)

Several RDF (graph data model) DBMS also support Datalog-like
rules, usually with limited IDB arity, e.g.:

• OWLIM Disk-backed RDF database with materialisation at
load time (commercial)

• RDFox Fast in-memory RDF database with runtime
materialisation and updates (academic)

{ Extremely diverse tools for very different requirements

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 42 of 43



Summary and Outlook

Several implementation techniques for Datalog

• bottom up (from the data) or top down (from the query)

• goal-directed (for a query) or not

Top-down: Query-Subquery (QSQ) approach (goal-directed)

Bottom-up:

• naive evaluation (not goal-directed)

• semi-naive evaluation (not goal-directed)

• Magic Sets (goal-directed)

Next topics:

• Graph databases and path queries

• Applications

Markus Krötzsch, 29 June 2015 Foundations of Databases and Query Languages slide 43 of 43


