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Argumentation in History

Plato’s Dialectic
The dialectical method is discourse between two or more
people holding different points of view about a subject, who
wish to establish the truth of the matter guided by reasoned
arguments.
The Republic (Plato), 348b

Leibniz’ Dream
“The only way to rectify our reasonings is to make them
as tangible as those of the Mathematicians, so that we
can find our error at a glance, and when there are
disputes among persons, we can simply say: Let us
calculate [calculemus], without further ado, to see who
is right.”
Leibniz, Gottfried Wilhelm, The Art of Discovery 1685, Wiener 51
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Argumentation Nowadays

Abstract Argumentation [Dung, 1995]
• In abstract argumentation frameworks (AFs) statements (called

arguments) are formulated together with a relation (attack) between them.
• Abstraction from the internal structure of the arguments.
• The conflicts between the arguments are resolved on the semantical level.
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Legal Reasoning
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Decision Support
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Social Networks
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Roadmap for the Lecture

Tuesday • Introduction
• Abstract Argumentation Frameworks
• Semantics

Thursday • Decision Problems, Computational Complexity
• Generalizations (ADFs)

Friday • Implementations
• Argumentation and Answer-Set Programming (ASP)
• Systems and Competition
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Introduction

Argumentation:
. . . the study of processes “concerned with how assertions are proposed,
discussed, and resolved in the context of issues upon which several diverging
opinions may be held”.
[Bench-Capon and Dunne, Argumentation in AI, AIJ 171:619-641, 2007]

Formal Models of Argumentation are concerned with
• representation of an argument
• representation of the relationship between arguments
• solving conflicts between the arguments (“acceptability”)
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Introduction (ctd.)

Increasingly important area
• “Argumentation” as keyword at all major AI conferences
• dedicated conference: COMMA (http://comma.csc.liv.ac.uk),

TAFA workshop; and several more workshops
• International Competition on Computational Models or Argumentation

(ICCMA http://argumentationcompetition.org/)
• Summer School on Argumentation (SSA) - co-located with COMMA
• specialized journal: Argument and Computation (IOS Press)
• two text books:

• Besnard, Hunter: Elements of Argumentation. MIT Press, 2008
• Rahwan, Simari (eds.): Argumentation in Artificial Intelligence.

Springer, 2009.
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• International Competition on Computational Models or Argumentation

(ICCMA http://argumentationcompetition.org/)
• Summer School on Argumentation (SSA) - co-located with COMMA
• specialized journal: Argument and Computation (IOS Press)
• two text books:

• Besnard, Hunter: Elements of Argumentation. MIT Press, 2008
• Rahwan, Simari (eds.): Argumentation in Artificial Intelligence.

Springer, 2009.

Handbook of Formal Argumentation HOFA
• http://formalargumentation.org

• Volume 1 to appear in 2017
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
∆ = {s, r, w, s→ ¬r, r→ ¬w, w→ ¬s}

F∆ :

α β

γ

pref (F∆) =
{
∅
}

stage(F∆) =
{
{α}, {β}, {γ}

}
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The Overall Process

Steps
• Starting point:

knowledge-base

• Form arguments

• Identify conflicts

• Abstract from
internal structure

• Resolve conflicts

• Draw conclusions

Example
∆ = {s, r, w, s→ ¬r, r→ ¬w, w→ ¬s}

〈{s, s→¬r},¬r〉 〈{r, r→¬w},¬w〉

〈{w, w→¬s},¬s〉

Cnpref (F∆) = Cn(>)
Cnstage(F∆) = Cn(¬r ∨ ¬w ∨ ¬s)
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The Overall Process (ctd.)

Some Remarks
• Main idea dates back to Dung [1995]; has then been refined by several

authors (Prakken, Gordon, Caminada, etc.)
• Separation between logical (forming arguments) and nonmonotonic

reasoning (“abstract argumentation frameworks”)
• Abstraction allows to compare several KR formalisms on a conceptual

level (“calculus of conflict”)

Main Challenge
• All Steps in the argumentation process are, in general, intractable.
• This calls for:

• careful complexity analysis (identification of tractable fragments)
• re-use of established tools for implementations (reduction method)
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Approaches to Form Arguments

Classical Arguments [Besnard & Hunter, 2001]
• Given is a KB (a set of propositions) ∆

• argument is a pair (Φ,α), such that Φ ⊆ ∆ is consistent, Φ |= α and for
no Ψ ⊂ Φ, Ψ |= α

• conflicts between arguments (Φ,α) and (Φ′,α′) arise if Φ and α′ are
contradicting.

Example
〈{s, s→¬r},¬r〉 〈{r, r→¬w},¬w〉

Other Approaches
• Arguments are trees of statements
• claims are obtained via strict and defeasible rules
• different notions of conflict: rebuttal, undercut, etc.
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Dung’s Abstract Argumentation Frameworks

Example

α β

γ

Main Properties
• Abstract from the concrete content of arguments but only consider the

relation between them
• Semantics select subsets of arguments respecting certain criteria
• Simple, yet powerful, formalism
• Most active research area in the field of argumentation.

• “plethora of semantics”
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Dung’s Abstract Argumentation Frameworks

Definition
An argumentation framework (AF) is a pair (A, R) where
• A is a set of arguments
• R ⊆ A× A is a relation representing the conflicts (“attacks”)

Example
F = ( {a, b, c, d, e} , {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)} )

b c d ea
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Basic Properties

Conflict-Free Sets
Given an AF F = (A, R).
A set S ⊆ A is conflict-free in F, if, for each a, b ∈ S, (a, b) /∈ R.

Example

b c d ea

cf (F) =
{
{a, c},
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Basic Properties (ctd.)

Admissible Sets [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is admissible in F, if
• S is conflict-free in F

• each a ∈ S is defended by S in F
• a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R, there

exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea

adm(F) =
{
{a, c},
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Basic Properties (ctd.)

Dung’s Fundamental Lemma
Let S be admissible in an AF F and a, a′ arguments in F defended by S in F.
Then,

1 S′ = S ∪ {a} is admissible in F

2 a′ is defended by S′ in F
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Semantics

Naive Extensions
Given an AF F = (A, R). A set S ⊆ A is a naive extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S 6⊂ T

Example

b c d ea

naive(F) =
{
{a, c},
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Semantics (ctd.)

Grounded Extension [Dung, 1995]
Given an AF F = (A, R). The unique grounded extension of F is defined as the
outcome S of the following “algorithm”:

1 put each argument a ∈ A which is not attacked in F into S; if no such
argument exists, return S;

2 remove from F all (new) arguments in S and all arguments attacked by
them (together with all adjacent attacks); and continue with Step 1.

Example

b c d ea

ground(F) =
{
{a}}
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,

there exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea

comp(F) =
{
{a, c},
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F
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Semantics (ctd.)

Complete Extension [Dung, 1995]
Given an AF (A, R). A set S ⊆ A is complete in F, if
• S is admissible in F

• each a ∈ A defended by S in F is contained in S
• Recall: a ∈ A is defended by S in F, if for each b ∈ A with (b, a) ∈ R,

there exists a c ∈ S, such that (c, b) ∈ R.

Example

b c d ea
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{
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}
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Semantics (ctd.)

Properties of the Grounded Extension
For any AF F, the grounded extension of F is the subset-minimal complete
extension of F.

Remark
Since there exists exactly one grounded extension for each AF F, we often write
ground(F) = S instead of ground(F) = {S}.
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ground(F) = S instead of ground(F) = {S}.
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Semantics (ctd.)

Preferred Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a preferred extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S 6⊂ T

Example

b c d ea

pref (F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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• for each T ⊆ A admissible in F, S 6⊂ T

Example

b c d ea
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if
• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}
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Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if
• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}, {a, d},
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if
• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}, {a, d}, {b, d},
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Semantics (ctd.)

Stable Extensions [Dung, 1995]
Given an AF F = (A, R). A set S ⊆ A is a stable extension of F, if
• S is conflict-free in F

• for each a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R

Example

b c d ea

stable(F) =
{
{a, c}, {a, d}, {b, d}, {a}, {b}, {c}, {d}, ∅,

}

ICCL Summer School 2017 Introduction to Formal Argumentation slide 74 of 98



Semantics (ctd.)

Some Relations
For any AF F the following relations hold:

1 Each stable extension of F is admissible in F

2 Each stable extension of F is also a preferred one

3 Each preferred extension of F is also a complete one
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Semantics (ctd.)

Semi-Stable Extensions [Caminada, 2006]
Given an AF F = (A, R). A set S ⊆ A is a semi-stable extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S+ 6⊂ T+

• for S ⊆ A, define S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Example

b c d ea

semi(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Semi-Stable Extensions [Caminada, 2006]
Given an AF F = (A, R). A set S ⊆ A is a semi-stable extension of F, if
• S is admissible in F

• for each T ⊆ A admissible in F, S+ 6⊂ T+

• for S ⊆ A, define S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Example

b c d ea

semi(F) =
{
{a, c}, {a, d}, {a}, {c}, {d}, ∅

}
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Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S+ 6⊂ T+

• recall S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF F = (A, R). A set S ⊆ A is an ideal extension of F, if
• S is admissible in F and contained in each preferred extension of F

• there is no T ⊃ S admissible in F and contained in each of pref (F)

Eager Extension [Caminada, 2007]
Given an AF F = (A, R). A set S ⊆ A is an eager extension of F, if
• S is admissible in F and contained in each semi-stable extension of F

• there is no T ⊃ S admissible in F and contained in each of semi(F)
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Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if
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Given an AF F = (A, R). A set S ⊆ A is an ideal extension of F, if
• S is admissible in F and contained in each preferred extension of F

• there is no T ⊃ S admissible in F and contained in each of pref (F)

Eager Extension [Caminada, 2007]
Given an AF F = (A, R). A set S ⊆ A is an eager extension of F, if
• S is admissible in F and contained in each semi-stable extension of F

• there is no T ⊃ S admissible in F and contained in each of semi(F)
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Semantics (ctd.)

Stage Extensions [Verheij, 1996]
Given an AF F = (A, R). A set S ⊆ A is a stage extension of F, if
• S is conflict-free in F

• for each T ⊆ A conflict-free in F, S+ 6⊂ T+

• recall S+ = S ∪ {a | ∃b ∈ S with (b, a) ∈ R}

Ideal Extension [Dung, Mancarella & Toni 2007]
Given an AF F = (A, R). A set S ⊆ A is an ideal extension of F, if
• S is admissible in F and contained in each preferred extension of F

• there is no T ⊃ S admissible in F and contained in each of pref (F)

Eager Extension [Caminada, 2007]
Given an AF F = (A, R). A set S ⊆ A is an eager extension of F, if
• S is admissible in F and contained in each semi-stable extension of F

• there is no T ⊃ S admissible in F and contained in each of semi(F)
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Semantics (ctd.)

Properties of Ideal Extensions
For any AF F the following observations hold:

1 there exists exactly one ideal extension of F

2 the ideal extension of F is also a complete one

The same results hold for the eager extension and similar variants [Dvořák et
al., 2011].
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c},
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Semantics (ctd.)

Resolution-based grounded Extensions
[Baroni,Giacomin 2008]
A resolution β of an AF F = (A, R) contains exactly one of the attacks (a, b),
(b, a) for each pair a, b ∈ A with {(a, b), (b, a)} ⊆ R.

A set S ⊆ A is a resolution-based grounded extension of F, if
• there exists a resolution β such that ground((A, R \ β)) = S

• and there is no resolution β′ such that ground((A, R \ β′)) ⊂ S

Example

b c d ea

ground∗(F) =
{
{a, c}, {a, d}}
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cf2 Semantics [Baroni, Giacomin & Guida 2005]

Definition (Separation)
An AF F = (A, R) is called separated if for each (a, b) ∈ R, there exists a path
from b to a. We define [[F]] =

⋃
C∈SCCs(F) F|C and call [[F]] the separation of F.

Example
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Definition (Separation)
An AF F = (A, R) is called separated if for each (a, b) ∈ R, there exists a path
from b to a. We define [[F]] =

⋃
C∈SCCs(F) F|C and call [[F]] the separation of F.

Example
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cf2 Semantics (ctd.)

Definition (Reachability)
Let F = (A, R) be an AF, B a set of arguments, and a, b ∈ A. We say that b is
reachable in F from a modulo B, in symbols a⇒B

F b, if there exists a path from a
to b in F|B.

Definition (∆F,S)
For an AF F = (A, R), D ⊆ A, and a set S of arguments,

∆F,S(D) = {a ∈ A | ∃b ∈ S : b 6= a, (b, a) ∈ R, a 6⇒A\D
F b}.

By ∆F,S, we denote the lfp of ∆F,S(∅).
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F).
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cf2 Extensions [G & Woltran 2010]
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S(∅) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S({d, e}) = {d, e}.
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cf2 Semantics (ctd.)

cf2 Extensions [G & Woltran 2010]
Given an AF F = (A, R). A set S ⊆ A is a cf2-extension of F, if
• S is conflict-free in F

• and S ∈ naive([[F −∆F,S]]).

Example
S = {c, f , h}, S ∈ cf (F), ∆F,S = {d, e}, S ∈ naive([[F −∆F,S]]).
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Relations between Semantics

conflict-free

naive

stage

stable

admissible

complete

preferred

semi-stable

ideal eager

grounded

res.b. grounded

cf2

Figure: An arrow from semantics σ to semantics τ encodes that
each σ-extension is also a τ -extension.
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