Foundations of Knowledge Representation Nonmonotonic Reasoning - Problems 2

Problem 1. Consider the Datalog[¬] knowledge base containing a single fact $\mathcal{F} = \{P(a, b)\}$ and a singleton set of rules \mathcal{R} consisting of the following rule:

$$P(x,y) \land \neg Q(y) \to Q(x)$$

Write down a stable model of $\mathcal{K} = \langle \mathcal{R}, \mathcal{F} \rangle$.

Problem 2. Consider the propositional Datalog[¬] knowledge base containing a single fact $\mathcal{F} = \{\text{Lion}\}$ and the following rules \mathcal{R} :

Mammal	\rightarrow	$Warm_Blooded$
$Mammal \land \neg Live_Sea$	\rightarrow	$Live_Land$
$Mammal \land \neg Male$	\rightarrow	Female
$Mammal \land \neg Female$	\rightarrow	Male
Dolphin	\rightarrow	Mammal
Dolphin	\rightarrow	Live_Sea
Lion	\rightarrow	Mammal

Consider the following interpretations, where we indicate explicitly which atoms are true in the interpretation (the remaining ones are false):

 $\mathcal{I}_1 = \{\text{Lion}, \text{Mammal}, \text{Warm}_B \text{looded}, \text{Live}_L \text{and}, \text{Female}\}$

 $\mathcal{I}_2 = \{\text{Lion}, \text{Mammal}, \text{Warm}_B \text{looded}, \text{Live}_L \text{and}, \text{Male}\}$

and answer the following questions:

- 1. Compute the reducts of $\mathcal{K} = \langle \mathcal{R}, \mathcal{F} \rangle$ by \mathcal{I}_1 and \mathcal{I}_2 .
- 2. Show that \mathcal{I}_1 and \mathcal{I}_2 are stable models of \mathcal{K} .
- 3. Knowing that \mathcal{I}_1 and \mathcal{I}_2 are the only stable models of \mathcal{K} , show that Live_Land is a logical consequence of \mathcal{K} . Is Female a logical consequence of \mathcal{K} ?

Problem 3. Express the default "I like Chinese food, unless it is spicy" using a propositional Datalog[¬] rule. Use the propositions ChineseFood, Spicy and Like. Given the set of facts $\mathcal{F} = \{\text{ChineseFood}\}, \text{ can I deduce the atom Likes}$ using stable model semantics? What if $\mathcal{F} = \{\text{ChineseFood}, \text{Spicy}\}$? And what if $\mathcal{F} = \emptyset$?