Extracting Confident General Concept Inclusions from Finite Interpretations

Daniel Borchmann

16. Oct. 2012

Daniel Borchmann

Overview

Motivation and Introduction

Pormal Concept Analysis

3 Description Logics

Confident General Concept Inclusions of Finite Interpretations

Goal (of AI)

Let computers do what they can do (and leave all the rest to the humans.)

Goal (of AI)

Let computers do what they can do (and leave all the rest to the humans.)

Requirement

Computers must know about the real world.

Goal (of AI)

Let computers do what they can do (and leave all the rest to the humans.)

Requirement

Computers must know about the real world.

Goal (of Knowledge Representation)

Represent knowledge in a way suitable for computers,

Goal (of AI)

Let computers do what they can do (and leave all the rest to the humans.)

Requirement

Computers must know about the real world.

Goal (of Knowledge Representation)

Represent knowledge in a way suitable for computers, i. e. as a *description logics ontology*.

Ontologies contain assertional knowledge and terminological knowledge.

Ontologies contain assertional knowledge and terminological knowledge.

Example (\mathcal{EL}^{\perp} -Ontology)

 $(\mathcal{T},\mathcal{A})$ is an ontology, where

 $\mathcal{T} = \{ \mathsf{Cat} \sqsubseteq \mathsf{Animal} \sqcap \exists \mathsf{hunts}.\mathsf{Mouse}, \\ \mathsf{Cat} \sqcap \mathsf{Mouse} \sqsubseteq \bot \} \\ \mathcal{A} = \{ \mathsf{Cat}(\mathsf{Tom}), \mathsf{Mouse}(\mathsf{Jerry}), \mathsf{hunts}(\mathsf{Tom}, \mathsf{Jerry}) \}$

Ontologies contain assertional knowledge and terminological knowledge.

Example (\mathcal{EL}^{\perp} -Ontology)

 $(\mathcal{T},\mathcal{A})$ is an ontology, where

$$\begin{split} \mathcal{T} &= \{ \mathsf{Cat} \sqsubseteq \mathsf{Animal} \sqcap \exists \mathsf{hunts}.\mathsf{Mouse}, \\ \mathsf{Cat} \sqcap \mathsf{Mouse} \sqsubseteq \bot \} \\ \mathcal{A} &= \{ \mathsf{Cat}(\mathsf{Tom}), \mathsf{Mouse}(\mathsf{Jerry}), \mathsf{hunts}(\mathsf{Tom}, \mathsf{Jerry}) \} \end{split}$$

Definition

Terminological axioms of the form $C \sqsubseteq D$ are called *general concept inclusions* (GCls.)

Problem

Construction of real world ontologies is a difficult task

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i. e. as textual publication)

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i. e. as textual publication)

Goal

Automatically construct ontologies from unstructured data

Problem

Construction of real world ontologies is a difficult task

But unstructured information is often already available (i. e. as textual publication)

Goal

Semi-Automatically construct the terminological part of ontologies from unstructured data

Question

What is unstructured data?

Question

What is unstructured data?

Example (RDF Triples)

Question

What is unstructured data?

Example (RDF Triples)

<http://dbpedia.org/resource/Autism> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Disease> .

<http://dbpedia.org/resource/Aristotle> <http://dbpedia.org/ontology/influenced> <http://dbpedia.org/resource/Western_philosophy> .

Question

What is unstructured data?

Example (RDF Triples)

<http://dbpedia.org/resource/Autism> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Disease> .

<http://dbpedia.org/resource/Aristotle> <http://dbpedia.org/ontology/influenced> <http://dbpedia.org/resource/Western_philosophy> .

Approach

Unstructured data is given as a *finite interpretation* (finite vertex- and edge-labeled graphs)

Daniel Borchmann

A Simple Example

Example (Interpretation \mathcal{I}_{pets})

A Simple Example

Example (Interpretation \mathcal{I}_{pets})

The *elements* (vertices) satisfying $C = Mammal \sqcap \exists hunts.Mouse are$

$$\mathcal{C}^{\mathcal{I}} = \{ 1 \}.$$

 $C^{\mathcal{I}}$ is called the *extension* of *C*.

Motivation and Introduction

Terminological Knowledge of Interpretations

Goal

Extract all *terminological knowledge*, i. e. all valid GCIs, from \mathcal{I} .

Daniel Borchmann

Definition

Let *C*, *D* be \mathcal{EL}^{\perp} -concept descriptions. Then the GCI $C \sqsubseteq D$ holds in \mathcal{I} if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Definition

Let *C*, *D* be \mathcal{EL}^{\perp} -concept descriptions. Then the GCl $C \sqsubseteq D$ holds in \mathcal{I} if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Definition

Let *C*, *D* be \mathcal{EL}^{\perp} -concept descriptions. Then the GCI $C \sqsubseteq D$ holds in \mathcal{I} if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Example

Cat \sqsubseteq Mammal holds in \mathcal{I}_{pets} ,

Definition

Let *C*, *D* be \mathcal{EL}^{\perp} -concept descriptions. Then the GCI $C \sqsubseteq D$ holds in \mathcal{I} if and only if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Problem

The number of valid GCIs of \mathcal{I} is (normally) infinite.

Example

Cat \sqsubseteq Mammal holds in \mathcal{I}_{pets} , and so do

 \exists hunts.Cat $\sqsubseteq \exists$ hunts.Mammal,

 \exists hunts. \exists hunts.Cat $\sqsubseteq \exists$ hunts. \exists hunts.Mammal,...

Approach

Consider bases of valid GCIs of $\mathcal{I},$ i. e. sets \mathcal{B} of GCIs such that

Approach

Consider *bases* of valid GCIs of \mathcal{I} , i. e. sets \mathcal{B} of GCIs such that

• \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is *sound*)

Approach

Consider bases of valid GCIs of \mathcal{I} , i. e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is *sound*)
- every valid GCI of \mathcal{I} already *follows* from \mathcal{B} (\mathcal{B} is *complete*.)

Approach

Consider bases of valid GCIs of \mathcal{I} , i. e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is *sound*)
- every valid GCI of \mathcal{I} already *follows* from \mathcal{B} (\mathcal{B} is *complete*.)

Goal

Find a *finite* base of all valid GCIs of \mathcal{I} .

Approach

Consider bases of valid GCIs of \mathcal{I} , i. e. sets \mathcal{B} of GCIs such that

- \mathcal{B} contains only valid GCIs of \mathcal{I} (\mathcal{B} is *sound*)
- every valid GCI of \mathcal{I} already *follows* from \mathcal{B} (\mathcal{B} is *complete*.)

Goal

Find a *finite* base of all valid GCIs of \mathcal{I} .

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^{\perp} -GCIs of \mathcal{I} always exists. One can be constructed effectively.

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

 $\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{\text{DBpedia}},$

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

 $\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only four *erroneous counterexamples* (in 5262 individuals.)

Problem

Approach assumes data set \mathcal{I} to be complete and free of errors.

Example

The GCI

$\exists child. \top \sqsubseteq Person$

does not hold in $\mathcal{I}_{DBpedia}$, but there are only four *erroneous counterexamples* (in 5262 individuals.)

Idea

Consider confident GCIs, i. e. GCIs that allow some few "exceptions."

Formal Concept Analysis From Mathematical Order Theory to a «Theory of Data»

Formal Concept Analysis

What is FCA?

Formal Concept Analysis is a restructuring attempt to modern lattice theory.

Formal Concept Analysis

What is FCA?

Formal Concept Analysis is a restructuring attempt to modern lattice theory.

Motivation for FCA (back in the 1980s)

Motivation for FCA (back in the 1980s)

 Claim: lattice theory has turned into a meaningless manipulation of symbols

Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce meaning into this theory

Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce meaning into this theory
- Use a theory of *concepts* for this

Motivation for FCA (back in the 1980s)

- Claim: lattice theory has turned into a meaningless manipulation of symbols
- Goal: (re)introduce meaning into this theory
- Use a theory of concepts for this

Literature

- Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts; R. Wille 1982
- Formal Concept Analysis Mathematical Foundations; R. Wille and B. Ganter; 1999

The fundamental notion of FCA is the one of a *formal context*.

The fundamental notion of FCA is the one of a *formal context*.

Definition

Let *G*, *M* be sets and let $I \subseteq G \times M$. Then the triple $\mathbb{K} = (G, M, I)$ is called a *formal context*.

The fundamental notion of FCA is the one of a *formal context*.

Definition

Let *G*, *M* be sets and let $I \subseteq G \times M$. Then the triple $\mathbb{K} = (G, M, I)$ is called a *formal context*.

Example

$$(\{1,\ldots,5\},\{1,\ldots,5\},\{(x,y) \mid x \leq y\})$$

The fundamental notion of FCA is the one of a *formal context*.

Definition

Let *G*, *M* be sets and let $I \subseteq G \times M$. Then the triple $\mathbb{K} = (G, M, I)$ is called a *formal context*.

Example

$$(\{1,\ldots,5\},\{1,\ldots,5\},\{(x,y) \mid x \leq y\})$$

Uhm ...

Meaning?

Let $\mathbb{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

Let $\mathbb{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

• Elements of G are called objects (Gegenstände)

Let $\mathbb{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

- Elements of G are called objects (Gegenstände)
- Elements of *M* are called *attributes* (Merkmale)

Let $\mathbb{K} = (G, M, I)$ be a formal context. We then introduce the following interpretation:

- Elements of G are called objects (Gegenstände)
- Elements of *M* are called *attributes* (Merkmale)
- We say that the object g has the attribute m if and only if $(g, m) \in I$

Formal Contexts – Graphical Representation

	1	2	3	4	5
1	×	×	×	×	×
2		×	X	X	Х
3			×	×	Х
4				×	×
5					Х

Formal Contexts – Graphical Representation

		size	size		ice from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Formal Concepts

Definition (Derivation Operators)

Let $A \subseteq G, B \subseteq M$. Then we define

$$A' := \{ m \in M \mid \forall g \in A \colon g \mid m \}, \\ B' := \{ g \in G \mid \forall m \in B \colon g \mid m \}.$$

Formal Concepts

Definition (Derivation Operators)

Let $A \subseteq G$, $B \subseteq M$. Then we define

$$A' := \{ m \in M \mid \forall g \in A \colon g \mid m \}, \\ B' := \{ g \in G \mid \forall m \in B \colon g \mid m \}.$$

Definition (Formal Concepts)

The pair (A, B) is called a *formal concept* of \mathbb{K} if and only if $A \subseteq G, B \subseteq M$ and

$$A' = B$$
 and $B' = A$.

Formal Concepts

Definition (Derivation Operators)

Let $A \subseteq G$, $B \subseteq M$. Then we define

$$A' := \{ m \in M \mid \forall g \in A \colon g \mid m \}, \\ B' := \{ g \in G \mid \forall m \in B \colon g \mid m \}.$$

Definition (Formal Concepts)

The pair (A, B) is called a *formal concept* of \mathbb{K} if and only if $A \subseteq G, B \subseteq M$ and

$$A' = B$$
 and $B' = A$.

The set of all formal contexts of \mathbb{K} is denoted by $\mathfrak{B}(\mathbb{K})$.

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Formal Concepts)

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Formal Concepts)

• ({ Mercury, Venus, Earth, Mars, Pluto }, { small })

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Formal Concepts)

• ({ Mercury, Venus, Earth, Mars, Pluto }, { small }) $\hat{=}$ small planets

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Formal Concepts)

- ({ Mercury, Venus, Earth, Mars, Pluto }, { small }) $\hat{=}$ small planets
- ({ Pluto }, { small, far, moon })

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Example (Formal Concepts)

- ({ Mercury, Venus, Earth, Mars, Pluto }, { small }) $\hat{=}$ small planets
- $(\{ Pluto \}, \{ small, far, moon \}) \stackrel{.}{=} small planets far away from sun$

Observation

Concepts can be ordered by generality.

Observation

Concepts can be ordered by generality.

Example (Formal Concepts)

- ({ Mercury, Venus, Earth, Mars, Pluto }, { small }) $\hat{=}$ small planets
- $(\{ Pluto \}, \{ small, far, moon \}) \triangleq small planets far away from sun$

Observation

Concepts can be ordered by generality.

Example (Formal Concepts)

- ({ Mercury, Venus, Earth, Mars, Pluto }, { small }) $\hat{=}$ small planets
- $(\{ Pluto \}, \{ small, far, moon \}) \triangleq small planets far away from sun$

Definition

Let (A_1, B_1) , $(A_2, B_2) \in \mathfrak{B}(\mathbb{K})$. Then define

$$(A_1, B_1) \leqslant (A_2, B_2) \iff A_1 \subseteq A_2.$$

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

Every planet, that is far away from sun has a moon.

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

		size		distan	ce from sun	moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

Every planet, that is far away from sun has a moon.

far planet $\hat{=}$

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

	size			distance from sun		moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

Every planet, that is far away from sun has a moon.

far planet $\hat{=}$ ({ Jupiter, Saturn, Uranus, Neptune, Pluto },

FCA can also be used to examine *dependencies* between attributes of \mathbb{K} .

	size			distance from sun		moon	
	small	medium	large	near	far	yes	no
Mercury	×			×			×
Venus	×			×			×
Earth	×			×		×	
Mars	×			×		×	
Jupiter			×		×	×	
Saturn			×		×	×	
Uranus		×			×	×	
Neptune		×			×	×	
Pluto	×				×	×	

Observation

Every planet, that is far away from sun has a moon.

far planet $\hat{=}$ ({ Jupiter, Saturn, Uranus, Neptune, Pluto }, { far, moon }).

Definition (Implication (Syntax))

Let *M* be a set, *A*, *B* \subseteq *M*. Then the pair (*A*, *B*) may be called an *implication* on *M* and is written as *A* \longrightarrow *B*.
Definition (Implication (Syntax))

Let *M* be a set, *A*, *B* \subseteq *M*. Then the pair (*A*, *B*) may be called an *implication* on *M* and is written as *A* \longrightarrow *B*.

Definition (Implication (Semantics))

Let $\mathbb{K} = (G, M, I)$ be a formal context and let $A \longrightarrow B$ be an implication M.

Definition (Implication (Syntax))

Let *M* be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on *M* and is written as $A \longrightarrow B$.

Definition (Implication (Semantics))

Let $\mathbb{K} = (G, M, I)$ be a formal context and let $A \longrightarrow B$ be an implication M. Then $A \longrightarrow b$ holds in \mathbb{K} if and only if

$$A' \subseteq B'$$
.

Definition (Implication (Syntax))

Let *M* be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on *M* and is written as $A \longrightarrow B$.

Definition (Implication (Semantics))

Let $\mathbb{K} = (G, M, I)$ be a formal context and let $A \longrightarrow B$ be an implication M. Then $A \longrightarrow b$ holds in \mathbb{K} if and only if

$$A'\subseteq B'.$$

Remark

 $A \longrightarrow B$ holds in \mathbb{K} if and only if all objects that have all attributes from A also have all attributes from B.

Definition (Implication (Syntax))

Let *M* be a set, $A, B \subseteq M$. Then the pair (A, B) may be called an *implication* on *M* and is written as $A \longrightarrow B$.

Definition (Implication (Semantics))

Let $\mathbb{K} = (G, M, I)$ be a formal context and let $A \longrightarrow B$ be an implication M. Then $A \longrightarrow b$ holds in \mathbb{K} if and only if

$$A'\subseteq B'.$$

Remark

 $A \longrightarrow B$ holds in \mathbb{K} if and only if all objects that have all attributes from A also have all attributes from B.

This is a model-based semantics!

Recall

Want to find a finite base of all GCIs of a finite interpretation

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find all valid implications of ${\mathbb K}$

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\mathbb K}$

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\rm I\!K}$

Definition

Let \mathcal{B} be a set of implications of \mathbb{K} .

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\rm I\!K}$

Definition

Let \mathcal{B} be a set of implications of \mathbb{K} .

• \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K} ;

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\mathbb K}$

Definition

Let \mathcal{B} be a set of implications of \mathbb{K} .

- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K} ;
- \mathcal{B} is called *complete*, if all implications valid in \mathbb{K} follow from \mathcal{B} .

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\rm I\!K}$

Definition

Let \mathcal{B} be a set of implications of \mathbb{K} .

- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K} ;
- \mathcal{B} is called *complete*, if all implications valid in \mathbb{K} follow from \mathcal{B} .

 ${\cal B}$ is called a *base* if it is sound and complete.

Recall

Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA

Find a good representation of all valid implications of ${\rm I\!K}$

Definition

Let \mathcal{B} be a set of implications of \mathbb{K} .

- \mathcal{B} is called *sound*, if all implications in \mathcal{B} hold in \mathbb{K} ;
- \mathcal{B} is called *complete*, if all implications valid in \mathbb{K} follow from \mathcal{B} .

 \mathcal{B} is called a *base* if it is sound and complete. \mathcal{B} is called an *irredundant* base if \mathcal{B} is a base and every proper subset $\mathcal{B}' \subsetneq \mathcal{B}$ is not a base.

One can explicitly describe some bases of ${\mathbb K}$

One can explicitly describe some bases of ${\mathbb K}$

Theorem

The set

$$\{A \longrightarrow A'' \mid A \subseteq M\}$$

is a base of \mathbb{K} .

One can explicitly describe some bases of ${\mathbb K}$

Theorem

The set

$$\{ A \longrightarrow A'' \mid A \subseteq M \}$$

is a base of $\mathbb K$.

This base is in general not irredundant.

One can explicitly describe some bases of ${\mathbb K}$

Theorem

The set

$$\{ A \longrightarrow A'' \mid A \subseteq M \}$$

is a base of $\mathbb K.$

This base is in general not irredundant.

Remark

One can explicitly describe a base of \mathbb{K} with minimal cardinality, the so-called canonical base of \mathbb{K} .

Description Logics Formalizing Knowledge The Right Way

In a Nutshell

In a Nutshell

In a Nutshell

In a Nutshell

The Plan

- Syntax of \mathcal{ALC}
- Semantics of ALC
- TBoxes, ABoxes and Ontologies
- Standard Reasoning Tasks

Literature

Baader et. al. ; *The Description Logic Handbook, Theory, Implementation and Applications*; Cambridge University Press; second edition; 2007

Fix the following sets:

- N_C of concept names
- N_R of role names

Fix the following sets:

- N_C of concept names
- N_R of role names

Example

$$N_C = \{$$
 Person, Male, Female $\}$
 $N_R = \{$ hasChild $\}$

Definition (Syntax of ALC)

The following terms form the set ${\mathcal C}$ of all ${\mathcal {ALC}}\mbox{-concept descriptions}$

Definition (Syntax of \mathcal{ALC})

The following terms form the set ${\mathcal C}$ of all ${\mathcal {ALC}}\mbox{-}concept$ descriptions

● ⊤,⊥	(universal and bottom concept)
• A for $A \in N_C$	(atomic concepts)
• $\neg C$ for $C \in C$	(negation)
• $C \sqcap D$ for $C, D \in C$	(conjunction)
• $C \sqcup D$ for $C, D \in C$	(disjunction)
• $\forall r.C$ for $r \in N_R$, $C \in C$	(value restriction)
• $\exists r.C$ for $r \in N_R$, $C \in C$	(existential restriction)

Definition (Syntax of ALC)

The following terms form the set $\mathcal C$ of all \mathcal{ALC} -concept descriptions

● ⊤,⊥	(universal and bottom concept)
• A for $A \in N_C$	(atomic concepts)
• $\neg C$ for $C \in C$	(negation)
• $C \sqcap D$ for $C, D \in C$	(conjunction)
• $C \sqcup D$ for $C, D \in C$	(disjunction)
• $\forall r.C$ for $r \in N_R$, $C \in C$	(value restriction)
• $\exists r.C$ for $r \in N_R$, $C \in C$	(existential restriction)

Example

$Person \sqcap Female \sqcap \exists hasChild. \top \sqcap \forall hasChild. Male$

Definition (Syntax of \mathcal{ALC})

The following terms form the set ${\mathcal C}$ of all ${\mathcal {ALC}}\mbox{-}concept$ descriptions

● ⊤,⊥	(universal and bottom concept)
• A for $A \in N_C$	(atomic concepts)
• $\neg C$ for $C \in C$	(negation)
• $C \sqcap D$ for $C, D \in C$	(conjunction)
• $C \sqcup D$ for $C, D \in C$	(disjunction)
• $\forall r.C$ for $r \in N_R$, $C \in C$	(value restriction)
• $\exists r.C$ for $r \in N_R$, $C \in C$	(existential restriction)

Example

$Person \sqcap Female \sqcap \exists hasChild. \top \sqcap \forall hasChild. Male$

A mother which has only sons.

Semantics of description logics are defined using interpretations.

Semantics of description logics are defined using interpretations.

Definition

An *interpretation* \mathcal{I} is a pair $(\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ where $\Delta_{\mathcal{I}}$ is a set and $\cdot^{\mathcal{I}}$ is mapping such that

Semantics of description logics are defined using interpretations.

Definition

An *interpretation* \mathcal{I} is a pair $(\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ where $\Delta_{\mathcal{I}}$ is a set and $\cdot^{\mathcal{I}}$ is mapping such that

•
$$A^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$$
 for each $A \in N_{\mathcal{C}}$

Semantics of description logics are defined using interpretations.

Definition

An *interpretation* \mathcal{I} is a pair $(\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ where $\Delta_{\mathcal{I}}$ is a set and $\cdot^{\mathcal{I}}$ is mapping such that

•
$$A^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}$$
 for each $A \in N_{C}$

•
$$r^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}} \times \Delta_{\mathcal{I}}$$
 for each $r \in N_R$

Example

Consider $\Delta_{\mathcal{I}} = \{\,\textbf{1},\textbf{2},\textbf{3},\textbf{4}\,\}$ and

$$\begin{aligned} \mathsf{Person}^{\mathcal{I}} &= \{\, 1, 2, 3, 4\,\} \\ \mathsf{Male}^{\mathcal{I}} &= \{\, 2, 3\,\} \\ \mathsf{Female}^{\mathcal{I}} &= \{\, 1, 4\,\} \\ \mathsf{hasChild}^{\mathcal{I}} &= \{\, (1, 3), (2, 3), (3, 4)\,\}. \end{aligned}$$

Example

Consider $\Delta_{\mathcal{I}} = \{1, 2, 3, 4\}$ and

$$\begin{split} \text{Person}^{\mathcal{I}} &= \{\, 1, 2, 3, 4\,\} \\ \text{Male}^{\mathcal{I}} &= \{\, 2, 3\,\} \\ \text{Female}^{\mathcal{I}} &= \{\, 1, 4\,\} \\ \text{hasChild}^{\mathcal{I}} &= \{\, (1, 3), (2, 3), (3, 4)\,\}. \end{split}$$

Semantics of \mathcal{ALC}

Definition

Let *C*, *D* be ALC-concept descriptions, $r \in N_R$.

$$\begin{array}{l} \top^{\mathcal{I}} = \Delta_{\mathcal{I}} \\ \perp^{\mathcal{I}} = \varnothing \\ (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall r.C)^{\mathcal{I}} = \{ x \in \Delta_{\mathcal{I}} \mid \forall y \in \Delta_{\mathcal{I}} \colon (x, y) \in r^{\mathcal{I}} \implies y \in C^{\mathcal{I}} \} \\ (\exists r.C)^{\mathcal{I}} = \{ x \in \Delta_{\mathcal{I}} \mid \exists y \in \Delta_{\mathcal{I}} \colon (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} \end{array}$$

Semantics of \mathcal{ALC}

Semantics of \mathcal{ALC}

 $(Person \sqcap Female \sqcap \exists hasChild. \top \sqcap \forall hasChild.Male)^{\mathcal{I}} =$

Semantics of \mathcal{ALC}

(Person \sqcap Female \sqcap \exists hasChild. $\top \sqcap \forall$ hasChild.Male) $\mathcal{I} = \{1\}$

Goal

Use Description Logics to represent knowledge

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

• terminological knowledge, i. e. "a cat is a mammal which hunts mice"

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

• terminological knowledge, i. e. "a cat is a mammal which hunts mice" \rightsquigarrow TBoxes ${\cal T}$

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- terminological knowledge, i. e. "a cat is a mammal which hunts mice" \rightsquigarrow TBoxes ${\cal T}$
- assertional knowledge, i. e. "Tom is a cat"

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- terminological knowledge, i. e. "a cat is a mammal which hunts mice" \rightsquigarrow TBoxes ${\cal T}$
- assertional knowledge, i. e. "Tom is a cat" \rightsquigarrow ABoxes \mathcal{A}

Goal

Use Description Logics to represent knowledge

Different forms of knowledge:

- terminological knowledge, i. e. "a cat is a mammal which hunts mice" \rightsquigarrow TBoxes ${\cal T}$
- assertional knowledge, i. e. "Tom is a cat" \rightsquigarrow ABoxes \mathcal{A}

Definition (Ontology)

An *ontology* is a pair $(\mathcal{T}, \mathcal{A})$, where \mathcal{T} is a TBox and \mathcal{A} is an ABox.

Description Logic Ontologies – An Example

Example (\mathcal{EL}^{\perp} -Ontology) (\mathcal{T}, \mathcal{A}) is an ontology, where

$$\begin{split} \mathcal{T} &= \{ \mathsf{Cat} \sqsubseteq \mathsf{Animal} \sqcap \exists \mathsf{hunts}.\mathsf{Mouse}, \\ & \mathsf{Cat} \sqcap \mathsf{Mouse} \sqsubseteq \bot \} \\ \mathcal{A} &= \{ \mathsf{Cat}(\mathsf{Tom}), \mathsf{Mouse}(\mathsf{Jerry}), \mathsf{hunts}(\mathsf{Tom}, \mathsf{Jerry}) \} \end{split}$$

Definition (Terminological Axioms)

Terminological Axioms are of the form

Definition (Terminological Axioms)

Terminological Axioms are of the form

A ≡ C, where C is a concept description and A ∉ N_C is a defined concept name (concept definition)

Definition (Terminological Axioms)

Terminological Axioms are of the form

- A ≡ C, where C is a concept description and A ∉ N_C is a defined concept name (concept definition)
- $C \subseteq D$, where C, D are concept descriptions (general concept inclusion)

Definition (Terminological Axioms)

Terminological Axioms are of the form

- A ≡ C, where C is a concept description and A ∉ N_C is a defined concept name (concept definition)
- $C \subseteq D$, where C, D are concept descriptions (general concept inclusion)

A TBox \mathcal{T} is a finite set of terminological axioms, where each defined concept name appears at most once.

Definition (Terminological Axioms)

Terminological Axioms are of the form

- A ≡ C, where C is a concept description and A ∉ N_C is a defined concept name (concept definition)
- $C \subseteq D$, where C, D are concept descriptions (general concept inclusion)

A TBox ${\cal T}$ is a finite set of terminological axioms, where each defined concept name appears at most once.

Example

$$\mathcal{T} = \{ \mathsf{Cat} \sqsubseteq \mathsf{Animal} \sqcap \exists \mathsf{hunts}.\mathsf{Mouse},$$

Cat \sqcap Mouse $\sqsubseteq \bot$ }

TBox Semantics

Definition (Descriptive Semantics)

An interpretation $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a *model* of a TBox \mathcal{T} if and only if

$$A^{\mathcal{I}} = C^{\mathcal{I}}$$
 and $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

for all $(A \equiv C)$, $(C \sqsubseteq D) \in \mathcal{T}$.

TBox Semantics

Definition (Descriptive Semantics)

An interpretation $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a *model* of a TBox \mathcal{T} if and only if

$$A^{\mathcal{I}} = C^{\mathcal{I}}$$
 and $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

for all $(A \equiv C)$, $(C \sqsubseteq D) \in \mathcal{T}$.

Extend the interpretation function $\cdot^{\mathcal{I}}$ to all defined concept names such that

$$\boldsymbol{A}^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}.$$

TBox Semantics

Definition (Descriptive Semantics)

An interpretation $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot^{\mathcal{I}})$ is a *model* of a TBox \mathcal{T} if and only if

$$A^{\mathcal{I}} = C^{\mathcal{I}}$$
 and $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

for all $(A \equiv C)$, $(C \sqsubseteq D) \in \mathcal{T}$.

Extend the interpretation function $\cdot^{\mathcal{I}}$ to all defined concept names such that

$$\boldsymbol{A}^{\mathcal{I}} \subseteq \Delta_{\mathcal{I}}.$$

Other semantics:

- greatest fixpoint semantics
- least fixpoint semantics

Confident GCIs of Finite Interpretations Handling Errors in Knowledge

Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^{\perp} -GCIs of $\mathcal I$ always exists. One can be constructed effectively.

Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^{\perp} -GCIs of \mathcal{I} always exists. One can be constructed effectively.

Goal

Extend approach to also handle errors.

Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid \mathcal{EL}^{\perp} -GCIs of $\mathcal I$ always exists. One can be constructed effectively.

Goal

Extend approach to also handle errors.

Plan

- Introduce necessary terminology
- Define confident GCIs as an approach to handle errors
- Discuss some relevant ideas from FCA
- Present first results

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

• What is $M_{\mathcal{I}}$?

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

• What is $M_{\mathcal{I}}$? \rightsquigarrow set of concept descriptions (no more details here)

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

- What is $M_{\mathcal{I}}$? \sim set of concept descriptions (no more details here)
- What is $\Box U$?

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

- What is $M_{\mathcal{I}}$? \rightsquigarrow set of concept descriptions (no more details here)
- What is $\Box U$?
- What is $((\prod U)^{\mathcal{I}})^{\mathcal{I}}$?

Theorem

The set

$$\mathcal{B}_2 := \{ \bigcap U \sqsubseteq ((\bigcap U)^{\mathcal{I}})^{\mathcal{I}} \mid U \subseteq M_{\mathcal{I}} \}$$

is a finite base of \mathcal{I} .

Questions:

- What is $M_{\mathcal{I}}$? \rightsquigarrow set of concept descriptions (no more details here)
- What is $\Box U$?
- What is $((\Box U)^{\mathcal{I}})^{\mathcal{I}}$?

Definition

$$\prod U := \begin{cases} \top & U = \emptyset \\ \prod_{V \in U} V & \text{otherwise.} \end{cases}$$

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in \mathcal{I} iff

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in \mathcal{I} iff

•
$$C^{\mathcal{I}} \supseteq X$$
,

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in $\mathcal I$ iff

•
$$C^{\mathcal{I}} \supseteq X$$
,

• if *D* is a concept description such that $D^{\mathcal{I}} \supseteq X$, then $C \sqsubseteq D$.

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in $\mathcal I$ iff

•
$$C^{\mathcal{I}} \supseteq X$$
,

• if *D* is a concept description such that $D^{\mathcal{I}} \supseteq X$, then $C \sqsubseteq D$.

Observation

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in $\mathcal I$ iff

•
$$C^{\mathcal{I}} \supseteq X$$
,

• if *D* is a concept description such that $D^{\mathcal{I}} \supseteq X$, then $C \sqsubseteq D$.

Observation

• C (as above) is a most specific concept description that describes X.

Let $X \subseteq \Delta_{\mathcal{I}}$. Then $X^{\mathcal{I}}$ denotes the *model-based most-specific concept description* of *X* in \mathcal{I} .

Definition

A concept description C is a model-based most-specific concept description of X in $\mathcal I$ iff

•
$$C^{\mathcal{I}} \supseteq X$$
,

• if *D* is a concept description such that $D^{\mathcal{I}} \supseteq X$, then $C \sqsubseteq D$.

Observation

- C (as above) is a most specific concept description that describes X.
- *C* is unique up to equivalence, denoted by $X^{\mathcal{I}}$.
Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^{\perp} .

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^{\perp} .

Solution: Consider $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions.

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^{\perp} .

Solution: Consider $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions.

Lemma

In $\mathcal{EL}_{gfp}^{\perp}$ model-based most-specific concept descriptions always exist.

Problem

Model-based most-specific concept descriptions do not need to exist in \mathcal{EL}^{\perp} .

Solution: Consider $\mathcal{EL}_{gfp}^{\perp}$ concept descriptions.

Lemma

In $\mathcal{EL}_{gfp}^{\perp}$ model-based most-specific concept descriptions always exist.

Lemma

If \mathcal{B} is an $\mathcal{EL}_{gfp}^{\perp}$ -base of \mathcal{I} , then one can effectively compute an \mathcal{EL}^{\perp} base \mathcal{B}' from \mathcal{B} .

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes Take relation hasChild \rightsquigarrow interpretation $\mathcal{I}_{DBpedia}$

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes Take relation hasChild \rightsquigarrow interpretation $\mathcal{I}_{\text{DBpedia}}$ $|\Delta_{\mathcal{I}_{\text{DBpedia}}}| = 5626$, Base of GCIs of size 1252.

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes Take relation hasChild \rightsquigarrow interpretation $\mathcal{I}_{\text{DBpedia}}$ $|\Delta_{\mathcal{I}_{\text{DBpedia}}}| = 5626$, Base of GCIs of size 1252.

Observation

\exists hasChild. $\top \sqsubseteq$ Person

does not hold in $\mathcal{I}_{DBpedia}$

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes Take relation hasChild \rightsquigarrow interpretation $\mathcal{I}_{\text{DBpedia}}$ $|\Delta_{\mathcal{I}_{\text{DBpedia}}}| = 5626$, Base of GCIs of size 1252.

Observation

\exists hasChild. $\top \sqsubseteq$ Person

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 *erroneous* counterexamples.

Experiment (B. 2010)

DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes Take relation hasChild \rightsquigarrow interpretation $\mathcal{I}_{\text{DBpedia}}$ $|\Delta_{\mathcal{I}_{\text{DBpedia}}}| = 5626$, Base of GCIs of size 1252.

Observation

\exists hasChild. $\top \sqsubseteq$ Person

does not hold in $\mathcal{I}_{DBpedia}$, but there are only 4 *erroneous* counterexamples.

Idea

Also consider GCIs that "almost" hold in $\mathcal{I}_{DBpedia}$.

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Approach

Consider $\mathsf{Th}_{c}(\mathcal{I})$ as set of "almost" valid GCIs of \mathcal{I} .

Definition

The *confidence* of $C \sqsubseteq D$ in \mathcal{I} is defined as

$$\operatorname{conf}_{\mathcal{I}}(C \sqsubseteq D) := \begin{cases} 1 & \text{if } C^{\mathcal{I}} = \emptyset, \\ rac{|(C \sqcap D)^{\mathcal{I}}|}{|C^{\mathcal{I}}|} & \text{otherwise.} \end{cases}$$

Let $c \in [0, 1]$. Define $Th_c(\mathcal{I})$ as the set of all GCIs having confidence of at least c in \mathcal{I} .

Approach

Consider $Th_c(\mathcal{I})$ as set of "almost" valid GCIs of \mathcal{I} .

Question

Can we find a *finite base* for $Th_c(\mathcal{I})$?

Confident General Concept Inclusions of Finite Interpretations

A Base for Confident GCIs

Answer

There exist finite bases of $Th_c(\mathcal{I})$.

Confident General Concept Inclusions of Finite Interpretations

A Base for Confident GCIs

Answer

There exist finite bases of $Th_c(\mathcal{I})$.

Use ideas from Formal Concept Analysis for this!

Definition

For an implication $A \longrightarrow B$ of a formal context \mathbb{K} define its *confidence* to be

$$\operatorname{conf}_{\mathbb{K}}(A \longrightarrow B) := \begin{cases} 1 & A' = \emptyset \\ rac{|(A \cup B)'|}{|A'|} & \text{otherwise.} \end{cases}$$

Definition

For an implication $A \longrightarrow B$ of a formal context \mathbb{K} define its *confidence* to be

$$\operatorname{conf}_{\mathbb{K}}(A \longrightarrow B) := \begin{cases} 1 & A' = \emptyset \\ rac{|(A \cup B)'|}{|A'|} & \text{otherwise.} \end{cases}$$

Goal

Find "small" representation of all implications with confidence at least $c \in [0, 1]$.

Definition

For an implication $A \longrightarrow B$ of a formal context \mathbb{K} define its *confidence* to be

$$\operatorname{conf}_{\mathbb{K}}(A \longrightarrow B) := \begin{cases} 1 & A' = \emptyset \\ rac{|(A \cup B)'|}{|A'|} & \text{otherwise.} \end{cases}$$

Goal

Find "small" representation of all implications with confidence at least $c \in [0, 1]$. More precisely, let

$$\mathsf{Th}_{c}(\mathbb{K}) := \{ A \longrightarrow B \mid \mathsf{conf}_{\mathbb{K}}(A \longrightarrow B) \geqslant c \},\$$

Definition

For an implication $A \longrightarrow B$ of a formal context \mathbb{K} define its *confidence* to be

$$\operatorname{conf}_{\mathbb{K}}(A \longrightarrow B) := egin{cases} 1 & A' = arnothing \ rac{|(A \cup B)'|}{|A'|} & ext{otherwise.} \end{cases}$$

Goal

Find "small" representation of all implications with confidence at least $c \in [0, 1]$. More precisely, let

$$\mathsf{Th}_{c}(\mathbb{K}) := \{ A \longrightarrow B \mid \mathsf{conf}_{\mathbb{K}}(A \longrightarrow B) \ge c \},\$$

Then: find a set $\mathcal{B} \subseteq Th_c(\mathbb{K})$ that is *complete* for $Th_c(\mathbb{K})$, i. e. that entails all implications from $Th_c(\mathbb{K})$.

Observation

Plan (Luxenburger)

Observation

Plan (Luxenburger)

• Restrict attention to implications with confidence < 1

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \longrightarrow B''$, where $B'' \supseteq A''$

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \longrightarrow B''$, where $B'' \supseteq A''$
- Consider only implications A" → B" where A" and B" are *directly neighbored*

Observation

Plan (Luxenburger)

- Restrict attention to implications with confidence < 1
- Consider only implications of the form $A'' \longrightarrow B''$, where $B'' \supseteq A''$
- Consider only implications *A*["] → *B*["] where *A*["] and *B*["] are *directly neighbored*

Lemma

For $A \subseteq B \subseteq C \subseteq M$ it is true that

$$\operatorname{conf}_{\mathbb{K}}(A \longrightarrow C) = \operatorname{conf}_{\mathbb{K}}(A \longrightarrow B) \cdot \operatorname{conf}_{\mathbb{K}}(B \longrightarrow C).$$

Theorem

Let $\mathbb{K} = (G, M, I)$ be a finite non-empty formal context and $c \in [0, 1]$. Let \mathcal{B} be a base of \mathbb{K} and define

$$\mathcal{C} := \{ A'' \longrightarrow C'' \mid A \subseteq C \subseteq M, \operatorname{conf}_{\mathbb{K}}(A'' \longrightarrow C'') \in [c, 1), \\ \nexists B'' : A'' \subsetneq B'' \subsetneq C'' \}.$$

Then $\mathcal{B} \cup \mathcal{C}$ is a base of $\mathsf{Th}_{c}(\mathbb{K})$.

A Base for Confident GCIs

Theorem (B. 2012)

Let $\mathcal B$ be a finite base of $\mathcal I,\, c\in [0,1]$ and

 $\operatorname{Conf}(\mathcal{I}, \boldsymbol{c}) := \{ \boldsymbol{X}^{\mathcal{I}} \sqsubseteq \boldsymbol{Y}^{\mathcal{I}} \mid \boldsymbol{Y} \subseteq \boldsymbol{X} \subseteq \Delta_{\mathcal{I}}, 1 > \operatorname{conf}_{\mathcal{I}}(\boldsymbol{X}^{\mathcal{I}} \sqsubseteq \boldsymbol{Y}^{\mathcal{I}}) \ge \boldsymbol{c} \}.$

Then $\mathcal{B} \cup \mathcal{C}$ is a finite base of $\mathsf{Th}_{c}(\mathcal{I})$.

A Base for Confident GCIs

Theorem (B. 2012)

Let \mathcal{B} be a finite base of \mathcal{I} , $c \in [0, 1]$ and

 $\operatorname{Conf}(\mathcal{I}, \boldsymbol{c}) := \{ \boldsymbol{X}^{\mathcal{I}} \sqsubseteq \boldsymbol{Y}^{\mathcal{I}} \mid \boldsymbol{Y} \subseteq \boldsymbol{X} \subseteq \Delta_{\mathcal{I}}, 1 > \operatorname{conf}_{\mathcal{I}}(\boldsymbol{X}^{\mathcal{I}} \sqsubseteq \boldsymbol{Y}^{\mathcal{I}}) \ge \boldsymbol{c} \}.$

Then $\mathcal{B} \cup \mathcal{C}$ is a finite base of $\mathsf{Th}_{c}(\mathcal{I})$.

Theorem (B. 2012)

The set

$$\mathcal{D} := \{ (X^{\mathcal{I}} \sqsubseteq Y^{\mathcal{I}}) \in \mathsf{Conf}(\mathcal{I}, \boldsymbol{c}) \mid \nexists Z \subseteq \Delta_{\mathcal{I}} \colon Y^{\mathcal{I}} \subsetneqq Z^{\mathcal{I}} \subsetneqq X^{\mathcal{I}} \}$$

is complete for C. In particular, $\mathcal{B} \cup \mathcal{D}$ is a finite base for $\mathsf{Th}_{\mathsf{c}}(\mathcal{I})$.

Thank You for Your Attention!