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Motivation and Introduction

Automation is a Good Idea

Goal (of AI)
Let computers do what they can do (and leave all the rest to the humans.)

Requirement
Computers must know about the real world.

Goal (of Knowledge Representation)
Represent knowledge in a way suitable for computers, i. e. as a description
logics ontology.
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Motivation and Introduction

Description Logics Ontologies

Ontologies contain assertional knowledge and terminological knowledge.

Example (ELK-Ontology)
(T ,A) is an ontology, where

T = tCat Ď Animal[ Dhunts.Mouse,
Cat[Mouse Ď Ku

A = tCat(Tom),Mouse(Jerry), hunts(Tom, Jerry) u

Definition
Terminological axioms of the form C Ď D are called general concept inclusions
(GCIs.)
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Motivation and Introduction

Description Logics Ontologies

Problem
Construction of real world ontologies is a difficult task

But unstructured information is often already available (i. e. as textual
publication)

Goal
Automatically construct ontologies from unstructured data
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Motivation and Introduction

Description Logics Ontologies

Problem
Construction of real world ontologies is a difficult task

But unstructured information is often already available (i. e. as textual
publication)

Goal
Semi-Automatically construct the terminological part of ontologies from
unstructured data
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Motivation and Introduction

Unstructured Data

Question
What is unstructured data?

Example (RDF Triples)
<http://dbpedia.org/resource/Autism>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://dbpedia.org/ontology/Disease> .

<http://dbpedia.org/resource/Aristotle>

<http://dbpedia.org/ontology/influenced>

<http://dbpedia.org/resource/Western_philosophy> .

Approach
Unstructured data is given as a finite interpretation (finite vertex- and
edge-labeled graphs)
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Motivation and Introduction

A Simple Example

Example (Interpretation Ipets)

1
Cat, Mammal

2 Dog, Mammal

3
Mouse, Mammal

4
Cheesehunts

fights

fights

eats

The elements (vertices) satisfying C = Mammal[ Dhunts.Mouse are

CI = t 1 u.

CI is called the extension of C.
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Motivation and Introduction

Terminological Knowledge of Interpretations

Goal
Extract all terminological knowledge, i. e. all valid GCIs, from I .
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Motivation and Introduction

Terminological Knowledge of Interpretations

Definition

Let C,D be ELK-concept descriptions. Then the GCI C Ď D holds in I if and
only if CI Ď DI .

Problem
The number of valid GCIs of I is (normally) infinite.

Example
Cat Ď Mammal holds in Ipets, and so do

Dhunts.Cat Ď Dhunts.Mammal,
Dhunts.Dhunts.Cat Ď Dhunts.Dhunts.Mammal, . . .
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Motivation and Introduction

Bases of Valid GCIs

Approach
Consider bases of valid GCIs of I , i. e. sets B of GCIs such that

B contains only valid GCIs of I (B is sound)
every valid GCI of I already follows from B (B is complete.)

Goal
Find a finite base of all valid GCIs of I .

Theorem (Baader, Distel 2008)

Finite bases of all valid ELK-GCIs of I always exists. One can be constructed
effectively.
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Motivation and Introduction

Problem: Errors in DBpedia

Problem
Approach assumes data set I to be complete and free of errors.

Example
The GCI

Dchild.J Ď Person

does not hold in IDBpedia, but there are only four erroneous counterexamples
(in 5262 individuals.)

Idea
Consider confident GCIs, i. e. GCIs that allow some few “exceptions.”
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Formal Concept Analysis

Formal Concept Analysis
From Mathematical Order Theory to a «Theory of Data»
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Formal Concept Analysis

Formal Concept Analysis

What is FCA?
Formal Concept Analysis is a restructuring attempt to modern lattice theory.
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Formal Concept Analysis

Formal Concept Analysis

Motivation for FCA (back in the 1980s)

Claim: lattice theory has turned into a meaningless manipulation of
symbols
Goal: (re)introduce meaning into this theory
Use a theory of concepts for this

Literature
Restructuring Lattice Theory: An Approach Based on Hierarchies of
Concepts; R. Wille 1982
Formal Concept Analysis Mathematical Foundations; R. Wille and
B. Ganter; 1999
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Formal Concept Analysis

Formal Contexts

The fundamental notion of FCA is the one of a formal context.

Definition
Let G,M be sets and let I Ď GˆM. Then the triple K = (G,M, I) is called a
formal context.

Example

(t 1, . . . , 5 u, t 1, . . . , 5 u, t (x, y) | x ď y u)

Uhm . . .
Meaning?
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Formal Concept Analysis

Formal Contexts – Basic Interpretation

Let K = (G,M, I) be a formal context.
We then introduce the following interpretation:

Elements of G are called objects (Gegenstände)
Elements of M are called attributes (Merkmale)
We say that the object g has the attribute m if and only if (g,m) P I
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Formal Concept Analysis

Formal Contexts – Graphical Representation

1 2 3 4 5
1 ˆ ˆ ˆ ˆ ˆ

2 ˆ ˆ ˆ ˆ

3 ˆ ˆ ˆ

4 ˆ ˆ

5 ˆ
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Formal Concept Analysis

Formal Contexts – Graphical Representation

size distance from sun moon
small medium large near far yes no

Mercury ˆ ˆ ˆ

Venus ˆ ˆ ˆ

Earth ˆ ˆ ˆ

Mars ˆ ˆ ˆ

Jupiter ˆ ˆ ˆ

Saturn ˆ ˆ ˆ

Uranus ˆ ˆ ˆ

Neptune ˆ ˆ ˆ

Pluto ˆ ˆ ˆ
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Formal Concept Analysis

Formal Concepts

Definition (Derivation Operators)
Let A Ď G,B Ď M. Then we define

A1 := tm P M | @g P A : g I m u,
B1 := t g P G | @m P B : g I m u.

Definition (Formal Concepts)
The pair (A,B) is called a formal concept of K if and only if A Ď G,B Ď M and

A1 = B and B1 = A.

The set of all formal contexts of K is denoted by B(K).
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Formal Concept Analysis

Formal Concepts – Example

size distance from sun moon
small medium large near far yes no

Mercury ˆ ˆ ˆ

Venus ˆ ˆ ˆ

Earth ˆ ˆ ˆ

Mars ˆ ˆ ˆ

Jupiter ˆ ˆ ˆ

Saturn ˆ ˆ ˆ

Uranus ˆ ˆ ˆ

Neptune ˆ ˆ ˆ

Pluto ˆ ˆ ˆ

Example (Formal Concepts)

(tMercury,Venus,Earth,Mars,Pluto u, t small u) =̂ small planets
(tPluto u, t small, far,moon u) =̂ small planets far away from sun
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(tPluto u, t small, far,moon u) =̂ small planets far away from sun
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Formal Concept Analysis

Concept Lattices

Observation
Concepts can be ordered by generality.

Example (Formal Concepts)
(tMercury,Venus,Earth,Mars,Pluto u, t small u) =̂ small planets
(tPluto u, t small, far,moon u) =̂ small planets far away from sun

Definition
Let (A1,B1), (A2,B2) P B(K). Then define

(A1,B1) ď (A2,B2) ðñ A1 Ď A2.
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Formal Concept Analysis

Concept Lattices

size distance from sun moon
small medium large near far yes no

Mercury ˆ ˆ ˆ

Venus ˆ ˆ ˆ

Earth ˆ ˆ ˆ

Mars ˆ ˆ ˆ

Jupiter ˆ ˆ ˆ

Saturn ˆ ˆ ˆ

Uranus ˆ ˆ ˆ

Neptune ˆ ˆ ˆ

Pluto ˆ ˆ ˆ
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Concept Lattices

Mercury,
Venus

no-moon
Mars,
Earth

Jupiter,
Saturn

large
Uranus,
Neptune

medium
Pluto

near far

small moon
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Formal Concept Analysis

Implications
FCA can also be used to examine dependencies between attributes of K.

size distance from sun moon
small medium large near far yes no

Mercury ˆ ˆ ˆ

Venus ˆ ˆ ˆ

Earth ˆ ˆ ˆ

Mars ˆ ˆ ˆ

Jupiter ˆ ˆ ˆ

Saturn ˆ ˆ ˆ

Uranus ˆ ˆ ˆ

Neptune ˆ ˆ ˆ

Pluto ˆ ˆ ˆ

Observation
Every planet, that is far away from sun has a moon.

far planet =̂ (t Jupiter,Saturn,Uranus,Neptune,Pluto u, t far,moon u).
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Formal Concept Analysis

Implications

Definition (Implication (Syntax))
Let M be a set, A,B Ď M. Then the pair (A,B) may be called an implication
on M and is written as A ÝÑ B.

Definition (Implication (Semantics))
Let K = (G,M, I) be a formal context and let A ÝÑ B be an implication M.
Then A ÝÑ b holds in K if and only if

A1 Ď B1.

Remark
A ÝÑ B holds in K if and only if all objects that have all attributes from A also
have all attributes from B.

This is a model-based semantics!
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Formal Concept Analysis

Bases of Implications

Recall
Want to find a finite base of all GCIs of a finite interpretation

In terms of FCA
Find a good representation of all valid implications of K

Definition
Let B be a set of implications of K.

B is called sound, if all implications in B hold in K;
B is called complete, if all implications valid in K follow from B.

B is called a base if it is sound and complete. B is called an irredundant base
if B is a base and every proper subset B1 Ĺ B is not a base.
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Formal Concept Analysis

Canonical Base

One can explicitly describe some bases of K

Theorem
The set

tA ÝÑ A2 | A Ď M u

is a base of K.

This base is in general not irredundant.

Remark
One can explicitly describe a base of K with minimal cardinality, the so-called
canonical base of K.
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Description Logics

Description Logics
Formalizing Knowledge The Right Way
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Description Logics

What are Description Logics about?

In a Nutshell
Description Logics are formal languages to represent knowledge that provide
methods to reason about this knowledge.
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Description Logics

The Plan

Syntax of ALC
Semantics of ALC
TBoxes, ABoxes and Ontologies
Standard Reasoning Tasks

Literature
Baader et. al. ; The Description Logic Handbook, Theory, Implementation and
Applications; Cambridge University Press; second edition; 2007
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Description Logics

Syntax of ALC

Fix the following sets:

NC of concept names
NR of role names

Example

NC = tPerson,Male,Female u
NR = t hasChild u
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Description Logics

Syntax of AL

Definition (Syntax of ALC)
The following terms form the set C of all ALC-concept descriptions

J,K (universal and bottom concept)
A for A P NC (atomic concepts)
 C for C P C (negation)
C[D for C,D P C (conjunction)
C\D for C,D P C (disjunction)
@r.C for r P NR,C P C (value restriction)
Dr.C for r P NR,C P C (existential restriction)

Example

Person[ Female[ DhasChild.J[@hasChild.Male

A mother which has only sons.

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 30 / 52



Description Logics

Syntax of AL

Definition (Syntax of ALC)
The following terms form the set C of all ALC-concept descriptions

J,K (universal and bottom concept)
A for A P NC (atomic concepts)
 C for C P C (negation)
C[D for C,D P C (conjunction)
C\D for C,D P C (disjunction)
@r.C for r P NR,C P C (value restriction)
Dr.C for r P NR,C P C (existential restriction)

Example

Person[ Female[ DhasChild.J[@hasChild.Male

A mother which has only sons.

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 30 / 52



Description Logics

Syntax of AL

Definition (Syntax of ALC)
The following terms form the set C of all ALC-concept descriptions

J,K (universal and bottom concept)
A for A P NC (atomic concepts)
 C for C P C (negation)
C[D for C,D P C (conjunction)
C\D for C,D P C (disjunction)
@r.C for r P NR,C P C (value restriction)
Dr.C for r P NR,C P C (existential restriction)

Example

Person[ Female[ DhasChild.J[@hasChild.Male

A mother which has only sons.

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 30 / 52



Description Logics

Syntax of AL

Definition (Syntax of ALC)
The following terms form the set C of all ALC-concept descriptions

J,K (universal and bottom concept)
A for A P NC (atomic concepts)
 C for C P C (negation)
C[D for C,D P C (conjunction)
C\D for C,D P C (disjunction)
@r.C for r P NR,C P C (value restriction)
Dr.C for r P NR,C P C (existential restriction)

Example

Person[ Female[ DhasChild.J[@hasChild.Male

A mother which has only sons.
Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 30 / 52



Description Logics

Interpretations

Semantics of description logics are defined using interpretations.

Definition
An interpretation I is a pair (∆I , ¨

I ) where ∆I is a set and ¨I is mapping such
that

AI Ď ∆I for each A P NC

rI Ď ∆I ˆ ∆I for each r P NR
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Description Logics

Interpretations

Example
Consider ∆I = t 1, 2, 3, 4 u and

PersonI = t 1, 2, 3, 4 u

MaleI = t 2, 3 u

FemaleI = t 1, 4 u

hasChildI = t (1, 3), (2, 3), (3, 4) u.

1

Person,Female

2

Person,Male

3

Person,Male

4

Person,Female

hasChild

hasChild hasChild
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Description Logics

Semantics of ALC

Definition
Let C,D be ALC-concept descriptions, r P NR.

JI = ∆I

KI = H

(C[D)I = CI XDI

(C\D)I = CI YDI

(@r.C)I = t x P ∆I | @y P ∆I : (x, y) P rI ùñ y P CI u

(Dr.C)I = t x P ∆I | Dy P ∆I : (x, y) P rI ^ y P CI u
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Description Logics

Semantics of ALC

Example

1

Person,Female

2

Person,Male

3

Person,Male

4

Person,Female

hasChild

hasChild hasChild

(Person[ Female[ DhasChild.J[@hasChild.Male)I =

t 1 u
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Description Logics

Semantics of ALC

Example

1

Person,Female

2

Person,Male

3

Person,Male

4

Person,Female

hasChild

hasChild hasChild

(Person[ Female[ DhasChild.J[@hasChild.Male)I = t 1 u

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 34 / 52



Description Logics

Description Logic Ontologies

Goal
Use Description Logics to represent knowledge

Different forms of knowledge:

terminological knowledge, i. e. “a cat is a mammal which hunts mice”
; TBoxes T
assertional knowledge, i. e. “Tom is a cat”
; ABoxes A

Definition (Ontology)
An ontology is a pair (T ,A), where T is a TBox and A is an ABox.
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Description Logics

Description Logic Ontologies – An Example

Example (ELK-Ontology)
(T ,A) is an ontology, where

T = tCat Ď Animal[ Dhunts.Mouse,
Cat[Mouse Ď Ku

A = tCat(Tom),Mouse(Jerry), hunts(Tom, Jerry) u
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Description Logics

Terminological Knowledge and TBoxes

Definition (Terminological Axioms)
Terminological Axioms are of the form

A ” C, where C is a concept description and A R NC is a defined concept
name (concept definition)
C Ď D, where C,D are concept descriptions (general concept inclusion)

A TBox T is a finite set of terminological axioms, where each defined concept
name appears at most once.

Example

T = tCat Ď Animal[ Dhunts.Mouse,
Cat[Mouse Ď Ku
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Description Logics

TBox Semantics

Definition (Descriptive Semantics)

An interpretation I = (∆I , ¨
I ) is a model of a TBox T if and only if

AI = CI and CI Ď DI

for all (A ” C), (C Ď D) P T .

Extend the interpretation function ¨I to all defined concept names such that

AI Ď ∆I .

Other semantics:
greatest fixpoint semantics
least fixpoint semantics
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Confident General Concept Inclusions of Finite Interpretations

Confident GCIs of Finite Interpretations
Handling Errors in Knowledge
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Confident General Concept Inclusions of Finite Interpretations

Work by Baader and Distel

Theorem (Baader, Distel 2008)

Finite bases of all valid ELK-GCIs of I always exists. One can be constructed
effectively.

Goal
Extend approach to also handle errors.

Plan
Introduce necessary terminology
Define confident GCIs as an approach to handle errors
Discuss some relevant ideas from FCA
Present first results
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Confident General Concept Inclusions of Finite Interpretations

In More Detail

Theorem
The set

B2 := t
ę

U Ď ((
ę

U)I )I | U Ď MI u

is a finite base of I .

Questions:

What is MI? ; set of concept descriptions (no more details here)
What is

Ű

U?
What is ((

Ű

U)I )I?

Definition
ę

U :=

#

J U = H
Ű

VPU V otherwise.
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Confident General Concept Inclusions of Finite Interpretations

Model-Based Most-Specific Concept Descriptions

Let X Ď ∆I . Then XI denotes the model-based most-specific concept
description of X in I .

Definition
A concept description C is a model-based most-specific concept description of
X in I iff

CI Ě X ,
if D is a concept description such that DI Ě X , then C Ď D.

Observation

C (as above) is a most specific concept description that describes X .
C is unique up to equivalence, denoted by XI .
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Confident General Concept Inclusions of Finite Interpretations

Model-Based Most-Specific Concept Descriptions

Problem

Model-based most-specific concept descriptions do not need to exist in ELK.

x

r

Solution: Consider ELK
gfp concept descriptions.

Lemma

In ELK
gfp model-based most-specific concept descriptions always exist.

Lemma

If B is an ELK
gfp-base of I , then one can effectively compute an ELK base B1

from B.
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Confident General Concept Inclusions of Finite Interpretations

Ontologies from Data: an Example

Experiment (B. 2010)
DBpedia: automatically extracted RDF triples from Wikipedia Infoboxes

Take relation hasChild ; interpretation IDBpedia
|∆IDBpedia | = 5626, Base of GCIs of size 1252.

Observation

DhasChild.J Ď Person

does not hold in IDBpedia, but there are only 4 erroneous counterexamples.

Idea
Also consider GCIs that “almost” hold in IDBpedia.
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Confident General Concept Inclusions of Finite Interpretations

Confidence of GCIs

Definition
The confidence of C Ď D in I is defined as

confI (C Ď D) :=

#

1 if CI = H,
|(C[D)I |

|CI |
otherwise.

Let c P [0, 1]. Define Thc(I) as the set of all GCIs having confidence of at
least c in I .

Approach
Consider Thc(I) as set of “almost” valid GCIs of I .

Question
Can we find a finite base for Thc(I)?
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Confident General Concept Inclusions of Finite Interpretations

A Base for Confident GCIs

Answer
There exist finite bases of Thc(I).

Use ideas from Formal Concept Analysis for this!
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Confident General Concept Inclusions of Finite Interpretations

Implications with Confidence

Definition
For an implication A ÝÑ B of a formal context K define its confidence to be

confK(A ÝÑ B) :=

#

1 A1 = H
|(AYB)1|

|A1|
otherwise.

Goal
Find “small” representation of all implications with confidence at least
c P [0, 1]. More precisely, let

Thc(K) := tA ÝÑ B | confK(A ÝÑ B) ě c u,

Then: find a set B Ď Thc(K) that is complete for Thc(K), i. e. that entails all
implications from Thc(K).
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Confident General Concept Inclusions of Finite Interpretations

Implications with Confidence

Observation
Plan (Luxenburger)

Restrict attention to implications with confidence ă 1
Consider only implications of the form A2 ÝÑ B2, where B2 Ě A2

Consider only implications A2 ÝÑ B2 where A2 and B2 are directly
neighbored

Lemma
For A Ď B Ď C Ď M it is true that

confK(A ÝÑ C) = confK(A ÝÑ B) ¨ confK(B ÝÑ C).
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Consider only implications of the form A2 ÝÑ B2, where B2 Ě A2
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Implications with Confidence

Theorem
Let K = (G,M, I) be a finite non-empty formal context and c P [0, 1]. Let B
be a base of K and define

C := tA2 ÝÑ C2 | A Ď C Ď M, confK(A2 ÝÑ C2) P [c, 1),
EB2 : A2 Ĺ B2 Ĺ C2 u.

Then B Y C is a base of Thc(K).
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An Order Isomorphism

(Int(KI ),Ď)

MI

H2

(mmsc(I),Ě)

Ű

prMI

K

Ű

H2

P2

Q2

confKI (P
2 ÝÑ Q2) P [c, 1)

Ű

P2

Ű

Q2

confI ((XI )I Ď (Y I )I ) P [c, 1)

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 50 / 52



Confident General Concept Inclusions of Finite Interpretations

An Order Isomorphism

(Int(KI ),Ď)

MI

H2 (mmsc(I),Ě)

Ű

prMI

K

Ű

H2

P2

Q2

confKI (P
2 ÝÑ Q2) P [c, 1)

Ű

P2

Ű

Q2

confI ((XI )I Ď (Y I )I ) P [c, 1)

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 50 / 52



Confident General Concept Inclusions of Finite Interpretations

An Order Isomorphism

(Int(KI ),Ď)

MI

H2 (mmsc(I),Ě)

Ű

prMI

K

Ű

H2

P2

Q2

confKI (P
2 ÝÑ Q2) P [c, 1)

Ű

P2

Ű

Q2

confI ((XI )I Ď (Y I )I ) P [c, 1)

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 50 / 52



Confident General Concept Inclusions of Finite Interpretations

An Order Isomorphism

(Int(KI ),Ď)

MI

H2 (mmsc(I),Ě)

Ű

prMI

K

Ű

H2

P2

Q2

confKI (P
2 ÝÑ Q2) P [c, 1)

Ű

P2

Ű

Q2

confI ((XI )I Ď (Y I )I ) P [c, 1)

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 50 / 52



Confident General Concept Inclusions of Finite Interpretations

An Order Isomorphism

(Int(KI ),Ď)

MI

H2 (mmsc(I),Ě)

Ű

prMI

K

Ű

H2

P2

Q2

confKI (P
2 ÝÑ Q2) P [c, 1)

Ű

P2

Ű

Q2

confI ((XI )I Ď (Y I )I ) P [c, 1)

Daniel Borchmann Extracting Confident GCIs 16. Oct. 2012 50 / 52



Confident General Concept Inclusions of Finite Interpretations

An Order Isomorphism

(Int(KI ),Ď)

MI

H2 (mmsc(I),Ě)

Ű

prMI

K

Ű

H2

prMI ((X
I )I )

prMI ((Y
I )I )

confKI (P
2 ÝÑ Q2) P [c, 1)

(XI )I

(Y I )I

confI ((XI )I Ď (Y I )I ) P [c, 1)
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A Base for Confident GCIs

Theorem (B. 2012)
Let B be a finite base of I , c P [0, 1] and

Conf(I , c) := tXI Ď Y I | Y Ď X Ď ∆I , 1 ą confI (XI Ď Y I ) ě c u.

Then B Y C is a finite base of Thc(I).

Theorem (B. 2012)
The set

D := t (XI Ď Y I ) P Conf(I , c) | EZ Ď ∆I : Y I Ĺ ZI Ĺ XI u

is complete for C. In particular, B YD is a finite base for Thc(I).
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Thank You for Your Attention!
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